Abstract

These Application Notes describe the procedures for configuring Avaya Mobile Communication System with Clear Channel Satellite XtremeSat.

Avaya Mobile Communication System (MCS) is a compact highly mobile full featured communication system designed for rapid deployment in disaster stricken or remote areas where other systems may have been damaged or do not exist. Avaya MCS can be connected to traditional and non-traditional networking facilities in a variety of ways. These Application Notes focus on the interoperability of Avaya MCS with the Clear Channel Satellite XtremeSat service to provide Internet connectivity via a satellite link. Using the Internet access provided by XtremeSat, an IPsec VPN tunnel can be established between Avaya Mobile Communication System and a main site to provide secure voice communication between the sites.

Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab.
1. Introduction

These Application Notes describe the procedures for configuring Avaya Mobile Communication System with Clear Channel Satellite XtremeSat.

Avaya Mobile Communication System is a compact highly mobile full featured communication system designed for rapid deployment in disaster stricken or remote areas where other systems may have been damaged or do not exist. Avaya MCS can be connected to traditional and non-traditional networking facilities in a variety of ways.

Depending on the application and deployment environment, Avaya MCS can be constructed using different Avaya system platforms and various equipment and networking options which are mounted in a rugged rack case and powered by an Uninterruptable Power Supply (UPS). For more details on the various options available with Avaya MCS, refer to [7].

For the VPN application described in these Application Notes, Avaya MCS consisted of the following:

- Avaya VPNremote Phones
- Avaya C363T-PWR Converged Stackable Switch
- EMS 2000 Series satellite interactive terminal (SIT) (required for satellite option)
- Very Small Aperture Terminal (VSAT) (required for satellite option)

In addition, a Linksys Broadband Firewall Router was used as a network address translation (NAT) device between the Clear Channel Satellite ISP and the private network provided as part of the Avaya MCS.

These Application Notes focus on the interoperability of Avaya MCS with the Clear Channel Satellite XtremeSat service to provide Internet connectivity via a satellite link. Using the Internet access provided by XtremeSat, an IPsec VPN tunnel can be established between each Avaya VPNremote Phone connected to Avaya MCS and a main site to provide secure voice communication between the main site and the remote users.

1.1. Configuration

Figure 1 illustrates the test configuration. The test configuration shows Avaya MCS at a remote site connected through XtremeSat to the Clear Channel Satellite earth station. The Clear Channel Satellite earth station can provide connectivity to the Internet and the PSTN for the users of the XtremeSat service. In the case of this VPN configuration, PSTN access is provided from the main site Avaya Media Gateway. Thus, the PSTN access provided by XtremeSat is not used and thus not shown in Figure 1. Voice is transmitted to the main site over IP through an IPsec VPN tunnel established with each Avaya VPNremote Phone. Data traffic from the PC connected to the Avaya VPNremote Phone does not pass through the VPN tunnel, but still is allowed to flow between the two sites or the Internet.

As previously mentioned, Avaya MCS can be constructed with several platform and equipment options. Figure 1 shows Avaya MCS consisting of an Avaya C363T-PWR Converged Stackable Switch and a set of Avaya VPNremote Phones. The Avaya C363T-PWR Converged Stackable
Switch is connected to a port on the private side of a Linksys BEFSX41 Broadband Firewall Router. If four or less users need to be supported, then the Avaya VPNremote Phones can be connected directly to the Linksys router and the Avaya C363T-PWR Converged Stackable Switch can be removed from the configuration. The Internet port of the Linksys router then connects to the EMS 2000 Series satellite interactive terminal (SIT). Both the Internet port of the Linksys router and the SIT are assigned public IP addresses from the service provider (Clear Channel Satellite). For reasons of security, all public IP addresses referenced in these Application Notes have been replaced with IP addresses in the range of 192.168.100.0 to 192.168.110.254.

The SIT is connected directly via coax cable to the satellite dish. XtremeSat uses a small dish at the remote site known as a Very Small Aperture Terminal (VSAT) to communicate to the earth station at the other end using the Digital Video Broadcast Return Channel via Satellite (DVB-RCS) standard. XtremeSat supports two types of VSATs: a one meter fixed dish and a .76 meter auto-acquisition dish. The auto-acquisition dish is designed to automatically locate and lock on the satellite signal when powered up and deployed. Compliance testing was done with the fixed dish configuration.

At the main site is a Juniper Networks NetScreen-50 firewall which connects to an Avaya C363T-PWR Converged Stackable Switch. The NetScreen-50 in addition to being a firewall will also terminate the IPsec VPN at the main site. The Avaya C363T-PWR Converged Stackable Switch provides routing at the main site. Also connected to the switch is an Avaya G700 Media Gateway with Avaya S8300 Server running Avaya Communication Manager.

It should be noted that calls between the Avaya MCS and the main site will typically experience one to two seconds of delay. This is expected with the known latency of a satellite link. In addition, since the voice traffic is routed over the Internet, there is no mechanism to ensure that voice traffic is given priority over data traffic.
Figure 1: Avaya MCS VPNremote Phone Configuration
2. Equipment and Software Validated

The following equipment and software/firmware were used for the sample configuration provided:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Software/Firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaya S8300 Server</td>
<td>Avaya Communication Manager 4.0.1 (with Avaya IA 770 Intuity Audix) (R014x.00.1.731.2) Service Pack 00.1.731.2-14330</td>
</tr>
<tr>
<td>Avaya G700 Media Gateway</td>
<td>26.33.0</td>
</tr>
<tr>
<td>Avaya VPNremote Phone</td>
<td>H323 VPN 232.4</td>
</tr>
<tr>
<td>Avaya 4620SW IP Telephone</td>
<td>H.323 version 2.8</td>
</tr>
<tr>
<td>Avaya 4621SW IP Telephone</td>
<td></td>
</tr>
<tr>
<td>Avaya IP Softphone</td>
<td>6.0 (Build 6.0.0.25) on Windows XP Professional SP2</td>
</tr>
<tr>
<td>Juniper Networks NetScreen-50 Firewall / VPN</td>
<td>ScreenOS 5.4.0r3.0</td>
</tr>
<tr>
<td>Linksys BEFSX41 Broadband Firewall Router</td>
<td>1.50.18</td>
</tr>
<tr>
<td>Clear Channel Satellite XtremeSat</td>
<td>V3009.R05</td>
</tr>
<tr>
<td>• EMS 2000 Series (SIT)</td>
<td></td>
</tr>
<tr>
<td>• VSAT</td>
<td></td>
</tr>
</tbody>
</table>

3. Configure Main Site Avaya Communication Manager

This section describes the configuration of Avaya Communication Manager at the main site. This section assumes Avaya S8300 Server has been installed using the procedures described in [1]. As part of these procedures, the Avaya C363T-PWR Converged Stackable Switch (IP interface 10.75.5.1 as shown in Section 4) was configured as the default gateway for the Avaya S8300 Server.

This section describes the configuration of the components necessary to support the Avaya VPNremote Phone. This includes the following components or services:

- IP network region
- IP codec set
- Stations

The configuration of Avaya Communication Manager was performed using the System Access Terminal (SAT). After the completion of the configuration, perform a save translation command to make the changes permanent.
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. IP Network Region</td>
<td>Determine the IP network region in which the Avaya VPN remote Phones will reside. The Avaya S8300 Server is located in the default IP network region 1. For simplicity, the Avaya VPN remote Phones were placed in this same network region for the compliance test. Codec set 1 was assigned to this region and Intra-region and Inter-region IP-IP Direct Audio was enabled. The example below shows the IP network region settings used for the compliance test. It should be noted that the Avaya VPN remote Phone Release Notes [9] specify that IP-IP Direct Audio (also known as shuffling) should be disabled when using a Juniper Networks Netscreen device at the enterprise. Otherwise, calls placed between Avaya VPN remote Phones may result in no audio. It was observed that it was not necessary to disable IP-IP Direct Audio for the specific configuration and test cases covered in the compliance test. However, if a user experiences no audio for calls between Avaya VPN remote Phones then IP-IP Direct Audio should be disabled in the IP network region where the Avaya VPN remote Phones reside.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>display ip-network-region 1</th>
<th>Page 1 of 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP NETWORK REGION</td>
<td></td>
</tr>
<tr>
<td>Region: 1</td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>Authoritative Domain:</td>
</tr>
<tr>
<td>Name:</td>
<td></td>
</tr>
<tr>
<td>MEDIA PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>Codec Set: 1</td>
<td></td>
</tr>
<tr>
<td>UDP Port Min: 2048</td>
<td></td>
</tr>
<tr>
<td>UDP Port Max: 3327</td>
<td></td>
</tr>
<tr>
<td>DIFFSERV/TOS PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>Call Control PHB Value: 46</td>
<td></td>
</tr>
<tr>
<td>Audio PHB Value: 46</td>
<td></td>
</tr>
<tr>
<td>Video PHB Value: 26</td>
<td></td>
</tr>
<tr>
<td>802.1P/Q PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>Call Control 802.1p Priority: 6</td>
<td></td>
</tr>
<tr>
<td>Audio 802.1p Priority: 6</td>
<td></td>
</tr>
<tr>
<td>Video 802.1p Priority: 5</td>
<td>AUDIO RESOURCE RESERVATION PARAMETERS</td>
</tr>
<tr>
<td>AUDIO RESOURCE RESERVATION PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>H.323 IP ENDPOINTS</td>
<td>RSVP Enabled? n</td>
</tr>
<tr>
<td>H.323 Link Bounce Recovery? y</td>
<td></td>
</tr>
<tr>
<td>Idle Traffic Interval (sec): 20</td>
<td></td>
</tr>
<tr>
<td>Keep-Alive Interval (sec): 5</td>
<td></td>
</tr>
<tr>
<td>Keep-Alive Count: 5</td>
<td></td>
</tr>
</tbody>
</table>

| 2. IP Codec Set | Define the codecs to be used. The compliance test was performed using both G.711MU and G.729AB during different parts of the test. The example below shows the setting for G.711MU. |

<table>
<thead>
<tr>
<th>display ip-codec-set 1</th>
<th>Page 1 of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Codec Set</td>
<td></td>
</tr>
<tr>
<td>Codec Set: 1</td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>Silence</td>
</tr>
<tr>
<td>Codec</td>
<td>Suppression</td>
</tr>
<tr>
<td>1: G.711MU</td>
<td>n</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.</td>
<td>Stations</td>
</tr>
<tr>
<td></td>
<td>Add a station for each Avaya VPNremote Phone to be supported. The configuration of the station is the same as with any other Avaya IP H.323 Telephone. The example below shows the use of the add station command to add station 30121 which is one of the Avaya VPNremote Phones located at the remote site. The Type field is set to 4620. The Port field is set to IP. The Name field should be set to a descriptive name for this user. The Security Code field contains the password used by the user to access the telephone. The Coverage Path field is set to the coverage path for Avaya IA 770 Intuity Audix. The configuration related to Avaya IA 770 Intuity Audix is beyond the scope of these Application Notes and thus is not shown.</td>
</tr>
</tbody>
</table>

```
add station 30121                                               Page   1 of   5
STATION

Extension: 30121                         Lock Messages? n               BCC: 0
Type: 4620                              Security Code: 1234           TN: 1
Port: IP                                Coverage Path 1: 1              COR: 1
Name: Tim                                Coverage Path 2:                COS: 1

STATION OPTIONS

  Time of Day Lock Table:
    Loss Group: 19                      Personalized Ringing Pattern: 1
    Speakerphone: 2-way                Mute Button Enabled? y
    Display Language: english          Expansion Module? n
    Survivable GK Node Name:           Media Complex Ext:
    Survivable COR: internal           IP SoftPhone? n
    Survivable Trunk Dest? y

Customizable Labels? y
```
4. Configure Main Site Avaya C363T-PWR Converged Stackable Switch

This section describes the Avaya C363T-PWR Converged Stackable Switch configuration. This section assumes the Avaya C363T-PWR has been installed using the procedures described in [6]. It is also assumed that the Avaya C363T-PWR Converged Stackable Switch has a router license installed. The complete media gateway configuration file is included in Appendix A.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1. | **Create VLANs**
Create a VLAN for use by Avaya Communication Manager and the Avaya IP Telephones. The compliance test created `vlan 2` with `name V2` for this purpose.
Create a second VLAN for the TFTP server. The compliance test created `vlan 3` with `name V3` for this purpose. Create a third VLAN for the private side of the NetScreen-50. The compliance test created `vlan 5` with `name V5` for this purpose.

G360-1(super)# set vlan 2 name V2
G360-1(super)# set vlan 3 name V3
G360-1(super)# set vlan 5 name V5 |
| 2. | **Create VLAN Names (Layer 3)**
For the VLANs created in Step 1, VLAN names must be created for these VLAN IDs at the router level so that IP addresses may be assigned to them. The names may be different than those used in Step 1. The VLAN names at layer 2 and 3 are tied together by the VLAN ID.

G360-1(super)# session router
Router-1(super)# set vlan 2 name voice
Router-1(super)# set vlan 3 name data
Router-1(super)# set vlan 5 name satellite |
| 3. | **Assign IP addresses**
For each VLAN created in Step 1, create a layer 3 interface and assign an IP address consistent with Figure 1. The example below shows how to set these parameters for the layer 3 interfaces IPI2, IPI3 and IPI5.

G360-1(super)# session router
Router -1(super)# interface IPI2
Router -1(super-if:IPI2)# ip vlan 2
Router -1(super-if:IPI2)# ip address 10.75.5.1 255.255.255.0
Router -1(super-if:IPI2)# exit
Router -1(super)# interface IPI3
Router -1(super-if:IPI3)# ip vlan 3
Router -1(super-if:IPI3)# ip address 10.75.10.1 255.255.255.0
Router -1(super-if:IPI3)# exit
Router -1(super)# interface IPI5
Router -1(super-if:IPI5)# ip vlan 5
Router -1(super-if:IPI5)# ip address 192.168.20.2 255.255.255.0
Router -1(super-if:IPI5)# exit |
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Default Gateway or Static Routes
Configure a default gateway or static routes such that traffic from the main site directed to the IP addresses of the remote site are sent to the Netscreen-50. For the compliance test, static routes were used for this purpose. The example below shows the setting of these static routes. The remote site uses two IP network addresses. The 10.9.9.0 address is the physical IP network address of the Avaya VPNremote Phones. The 100.100.100.0 address is a virtual IP network address assigned to the Avaya VPNremote Phones by the Netscreen-50 in Section 5.</td>
</tr>
</tbody>
</table>
| | G360-1(super)# ip route 10.9.9.0 255.255.255.0 192.168.20.1
G360-1(super)# ip route 100.100.100.0 255.255.255.0 192.168.20.1 |
| 5. | **Save Configuration**
Use the `copy running-config startup-config` command to save the configuration. |
| | G360-1(super)# copy running-config startup-config |

5. **Configure Main Site Juniper Networks NetScreen-50**

This section describes the Juniper Networks NetScreen-50 configuration including in particular the IPsec VPN tunnel setup. This section assumes the NetScreen-50 has been installed as described in [13] and starts with the factory defaults. The complete configuration file is included in Appendix B.

The NetScreen-50 can be configured using either the Command Line Interface (CLI) or the Web interface. This section will use the CLI to perform the initial basic setup of the device and then will switch to using the Web interface to complete the configuration.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Login
Using a terminal emulation application, connect to the console port using the following parameters: 9600 baud, 8 data bits, no parity, 1 stop bit, and no flow control. Log in with the appropriate user name and password.</td>
</tr>
<tr>
<td>2.</td>
<td>Trusted Zone
Statically administer the trusted zone Ethernet interface. The NetScreen-50 trusted zone is the protected or private side of the firewall. The IP address was also enabled to perform management.</td>
</tr>
</tbody>
</table>
| | ns50-> set interface ethernet1 zone trust
ns50-> set interface ethernet1 ip 192.168.20.1/24
n50-> set interface ethernet1 manage-ip 192.168.20.1 |
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3. | **Untrusted Zone**
Sectially administer the untrusted zone Ethernet interface. The NetScreen-50 untrusted zone is the unprotected or public side of the firewall.

```
ns50-> set interface ethernet3 zone untrust
ns50-> set interface ethernet3 ip 192.168.105.232/27
```
| 4. | **Static Route**
Define a static route to reach the trusted network which is not directly attached.

```
ns50-> set vrouter trust-vr route 10.75.0.0/16 interface ethernet1 gateway 192.168.20.2
```
| 5. | **Default Route**
Define a default static route for all outbound traffic.

```
ns50-> set vrouter trust-vr route 0.0.0.0/0 interface ethernet3 gateway 192.168.105.225
```
| 6. | **Clear H.323 ALG** |
| 7. | **Save Configuration**
Save the configuration.

```
ns50-> save
```
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 8. | **Login to the Web interface.**
Enter the IP address of the private side of the Netscreen-50 as the destination address in a Web browser. At the login screen, provide the appropriate credentials. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9. | **Home Page**
The Home page appears as shown below. The menu tree in the left pane will be used to navigate through the remaining steps. |
Step 10: IP Address Pool

The XAuth protocol enables the Netscreen-50 to dynamically assign IP addresses from a configured IP Address pool range to IPSec clients such as the Avaya VPNremote Phones. The following steps create the IP Address Pool:

1. From the left navigation menu, select **Objects > IP Pools**. On the **IP Pools** page (not shown), click **New**.
2. Populate the fields shown below then select **OK** to save. The **IP Pool Name** is a descriptive name for this IP Pool. Once configured, this name will appear in the **IP Pool Name** drop-down menu of **Step 24**. Ensure the IP address range does not conflict with addresses used throughout the corporate trusted network.

<table>
<thead>
<tr>
<th>IP Pool Name</th>
<th>Start IP</th>
<th>End IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote-User-IP</td>
<td>100.100.100.1</td>
<td>100.100.100.50</td>
</tr>
</tbody>
</table>

 ![IP Pools Table]

 The **IP Pools** page displays the new address pool entry.
11. **Local User Configuration - IKE User**
The sample configuration includes two different user types; IKE users and XAuth users. IKE users are typically associated with a device such as the Avaya VPNremote Phone and are used to authenticate the actual device during the establishment of the IPSec tunnel. XAuth users are remotely authenticated users who access a head-end security gateway via an AutoKey IKE VPN tunnel. Thus, the authentication of IKE users is actually the authentication of an individual’s device (e.g., Avaya VPNremote Phone); whereas the authentication of XAuth users is the authentication of the individual themselves.

The following steps create an IKE user to be used by Avaya VPNremote Phones for IKE authentication.

From the left navigation menu, select **Objects > Users > Local**. On the **Local Users** page (not shown), click **New**. Configure the highlighted fields shown below. All remaining fields can be left as default. Select **OK** to save.

The **Number of Multiple Logins with Same ID** parameter specifies the number of endpoints that can concurrently establish IPSec tunnels using this identity. This number must equal or exceed the number of Avaya VPNremote Phones accessing the Netscreen-50.

IKE Identity, combined with a Pre-Shared Key, is used to identify the endpoint when an initial IKE Phase one dialog begins. The format of the IKE Identity is that of an email address. As described in **Section 9, Step 2**, the **Group Name** field of the Avaya VPNremote Phone must match this IKE Identity string. **vpnphone@avaya.com** is used in these Application Notes however any email address string can be used.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 11. | **Local User Configuration - IKE User**
The sample configuration includes two different user types; IKE users and XAuth users. IKE users are typically associated with a device such as the Avaya VPNremote Phone and are used to authenticate the actual device during the establishment of the IPSec tunnel. XAuth users are remotely authenticated users who access a head-end security gateway via an AutoKey IKE VPN tunnel. Thus, the authentication of IKE users is actually the authentication of an individual’s device (e.g., Avaya VPNremote Phone); whereas the authentication of XAuth users is the authentication of the individual themselves.
The following steps create an IKE user to be used by Avaya VPNremote Phones for IKE authentication.
From the left navigation menu, select **Objects > Users > Local**. On the **Local Users** page (not shown), click **New**. Configure the highlighted fields shown below. All remaining fields can be left as default. Select **OK** to save.
The **Number of Multiple Logins with Same ID** parameter specifies the number of endpoints that can concurrently establish IPSec tunnels using this identity. This number must equal or exceed the number of Avaya VPNremote Phones accessing the Netscreen-50.
IKE Identity, combined with a Pre-Shared Key, is used to identify the endpoint when an initial IKE Phase one dialog begins. The format of the IKE Identity is that of an email address. As described in **Section 9, Step 2**, the **Group Name** field of the Avaya VPNremote Phone must match this IKE Identity string. **vpnphone@avaya.com** is used in these Application Notes however any email address string can be used. |
Step 12. **Local User Configuration - XAuth Users**

Two XAuth user accounts, **Tim** and **Terry** are created in the sample configuration for users of the Avaya VPNremote Phones. The following steps create a user account for **Tim**. Follow the same steps to create an account for **Terry**.

The XAuth server of the Netscreen-50 provides the authentication of these users. The users of the Avaya VPNremote Phones will need to be supplied with their user name and password. Users will be prompted on the phone display to enter this information as the Avaya VPNremote Phone establishes the IPSec tunnel or the password can be stored in the Avaya VPNremote Phones flash memory. See Section 9, Step 2 for additional detail.

From the left navigation menu, select **Objects > Users > Local**. On the **Local Users** page (not shown), click **New**. Configure the highlighted fields shown below. All remaining fields can be left as default. Select **OK** to save.

Follow the same steps for each additional user.

<table>
<thead>
<tr>
<th>Auth/IKE/XAuth/L2TP User</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
</tr>
<tr>
<td>Tim</td>
</tr>
<tr>
<td>Groups: remoteuser-grp</td>
</tr>
<tr>
<td>IKE User</td>
</tr>
<tr>
<td>Simple Identity</td>
</tr>
<tr>
<td>Use Distinguished Name For ID</td>
</tr>
<tr>
<td>Authentication User</td>
</tr>
<tr>
<td>XAuth User</td>
</tr>
<tr>
<td>L2TP User</td>
</tr>
<tr>
<td>L2TP/XAuth Remote Settings</td>
</tr>
<tr>
<td>IP Pool</td>
</tr>
<tr>
<td>Primary DNS IP</td>
</tr>
<tr>
<td>Secondary DNS IP</td>
</tr>
</tbody>
</table>

![Auth/IKE/XAuth/L2TP User Configuration Table](image-url)
13. **Resulting Users**

The resulting users created in **Steps 11 and 12** are shown below and can be displayed by navigating to **Objects > Users > Local**.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Group</th>
<th>Status</th>
<th>Identity</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terry</td>
<td>XAuth</td>
<td>–</td>
<td>Enabled</td>
<td>–</td>
<td>Edit, Remove</td>
</tr>
<tr>
<td>Tim</td>
<td>XAuth</td>
<td>–</td>
<td>Enabled</td>
<td>–</td>
<td>Edit, Remove</td>
</tr>
<tr>
<td>vpnphone-ike</td>
<td>IKE</td>
<td>–</td>
<td>Enabled</td>
<td>vpnphone@avaya.com</td>
<td>Edit, Remove</td>
</tr>
</tbody>
</table>

14. **Local User Group Configuration - IKE Group**

User groups have the benefit of being able to create one policy for the user group and that policy automatically applies to all members of a group. This eliminates the need to create policies for each individual user.

The sample configuration includes two different types of user groups: IKE and XAuth. The IKE users and XAuth users created in **Steps 11 and 12** must now be added to an IKE Group and a XAuth Group respectfully.

To create a user group, select **Objects > Users > Local Groups** from the left navigation menu. On the **Local Groups** page (not shown), click **New**. Enter a descriptive **Group Name**. To add members to the group, select the user name in the **Available Members** column on the right, then click the << button to move the user name to the **Group Members** column on the left.

The example below shows the IKE group. It contains a single user name: **vpnphone-ike**.
Step 15. Local User Group Configuration - XAuth Group

Use the same procedures described in Step 14 to create the group for the XAuth users. The example below shows the XAuth group used in the test configuration.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Group type</th>
<th>Members</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>remoteuser-grp</td>
<td>xauth</td>
<td>Terry, Tim</td>
<td>Edit</td>
</tr>
<tr>
<td>vpnphone-grp</td>
<td>ike</td>
<td>vpnphone-iike</td>
<td>Edit</td>
</tr>
</tbody>
</table>

Step 16. Resulting Groups

The resulting groups created in Steps 14 and 15 are shown below and can be displayed by navigating to Objects > Users > Local Groups.
17. **VPN**

Setting up the VPN tunnel encryption and authentication is a two-phase process.
- Phase 1 covers how the Avaya VPNremote Phone and the Netscreen-50 will securely negotiate and handle the building of the tunnel.
- Phase 2 sets up how the data passing through the tunnel will be encrypted at one end and decrypted at the other. This process is carried out on both sides of the tunnel.

The table below provides the IKE Proposals used in the sample configuration including the proposal name used by the Netscreen-50. This information will be used in **Steps 18 – 23** to configure the VPN on the Netscreen-50.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Encryption/Authentication Method</th>
<th>Diffie-Hellman Group</th>
<th>Encryption Algorithm</th>
<th>Hash Algorithm</th>
<th>Life Time (sec)</th>
<th>Netscreen-50 Proposal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Pre-Shared Key</td>
<td>2</td>
<td>3DES</td>
<td>MD5</td>
<td>28800</td>
<td>pre-g2-3des-md5</td>
</tr>
<tr>
<td>P2</td>
<td>ESP</td>
<td>2</td>
<td>AES128</td>
<td>SHA-1</td>
<td>3600</td>
<td>g2-esp-aes128-sha</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 18. | **AutoKey IKE Gateway Configuration – Phase 1**
From the left navigation menu, select **VPNs > AutoKey Advanced > Gateway**. On the **AutoKey Advanced Gateway** page (not shown), click **New**. Configure the highlighted fields shown below. All remaining fields can be left as default.

Provide a descriptive **Gateway Name**. Selecting **Custom** for the **Security Level** provides access to a more complete list of proposals available on the Netscreen-50. Selecting **Dialup User Group** associates the **Group vpnphone-grp** created in **Step 14** to this IKE gateway. Enter an ASCII text string for a **Preshared Key** that will match the text entered on the Avaya VPNremote Phone. The **Outgoing Interface** is the interface which terminates the VPN tunnel.

Click the **Advanced** button to access additional configuration options. |

<table>
<thead>
<tr>
<th>Gateway Name</th>
<th>vpnphone-gw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Level</td>
<td></td>
</tr>
</tbody>
</table>
- Standard
- Compatible
- Basic
- Custom |
| Remote Gateway Type |
- Static IP Address
- Dynamic IP Address
- Dialup User
- Dialup User Group |
- IP Address/Hostname
- Peer ID
- User None
- Group vpnphone-grp |
| Preshared Key | **** |
| Local ID | (optional) |
| Outgoing Interface | ethernet3 |

[Diagram of AutoKey IKE Gateway Configuration – Phase 1]
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 19. | **Phase 1 – Continued**
Configure the highlighted fields shown below. All remaining fields can be left as default. Click the **Return** button at the bottom of the page (not shown) to complete the advanced configuration and then click the **OK** button on the previous page to save.

Select **Custom** for **Security Level** and the appropriate **Phase 1 Proposal** from the drop-down menu. Refer to **Step 17**. **Mode** must be set to **Aggressive** for endpoint negotiation such as the Avaya VPNremote Phone.

Enable NAT-Traversal allows IPSec traffic after Phase 2 negotiations are complete to traverse a Network Address Translation (NAT) device. The Netscreen-50 first checks if a NAT device is present in the path between itself and the Avaya VPNremote Phone. If a NAT device is detected, the Netscreen-50 uses UDP to encapsulate each IPSec packet. In the case of the compliance test, the Linksys router serves as a NAT device.

![Configuration screenshot](image-url)
Step 20. Phase 1 Complete

The gateway configured in Steps 18 – 19 can be displayed by navigating to VPNs > AutoKey Advanced > Gateway.

<table>
<thead>
<tr>
<th>Name</th>
<th>Peer Type</th>
<th>Address/ID/User Group</th>
<th>Local ID</th>
<th>Security Level</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpnphone-gw</td>
<td>Dialup</td>
<td>vpnphone-grp</td>
<td>-</td>
<td>Custom</td>
<td>Edit, Xauth</td>
</tr>
</tbody>
</table>

Step 21. AutoKey IKE VPN Tunnel Configuration – Phase 2

From the left navigation menu, select VPNs > AutoKey IKE. On the AutoKey IKE page (not shown), click New. Configure the highlighted fields shown below. All remaining fields can be left as default.

Provide a descriptive **VPN Name**. Selecting Custom for the **Security Level** provides access to a more complete list of proposals available on the Netscreen-50. Select **Predefined** for **Remote Gateway** and then select the remote gateway name entered in Step 18 from the drop-down menu (vpnphone-gw).

Click the **Advanced** button to access additional configuration options.
Step 22. Phase 2 Continued

Configure the highlighted fields shown below. All remaining fields can be left as default. Click the **Return** button at the bottom of the page (not shown) to complete the advanced configuration and then click the **OK** button on the previous page to save.

Select **Custom** for **Security Level** and the appropriate **Phase 2 Proposal** from the drop-down menu. Refer to **Step 17. Replay Protection** protects the encrypted IPSec traffic from man-in-the-middle replay attacks by including a sequence number with each IKE negotiation between the IKE endpoints. **Bind to None** uses the outgoing interface, Ethernet 1, for all VPN tunnel traffic.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.</td>
<td>Phase 2 Continued</td>
</tr>
<tr>
<td></td>
<td>Configure the highlighted fields shown below. All remaining fields can be left as default. Click the Return button at the bottom of the page (not shown) to complete the advanced configuration and then click the OK button on the previous page to save.</td>
</tr>
</tbody>
</table>

Select **Custom** for **Security Level** and the appropriate **Phase 2 Proposal** from the drop-down menu. Refer to **Step 17. Replay Protection** protects the encrypted IPSec traffic from man-in-the-middle replay attacks by including a sequence number with each IKE negotiation between the IKE endpoints. **Bind to None** uses the outgoing interface, Ethernet 1, for all VPN tunnel traffic.
Step 23. Phase 2 Complete
The VPN configured in Steps 21 – 22 can be displayed by navigating to **VPNs > AutoKey IKE**.

<table>
<thead>
<tr>
<th>Name</th>
<th>Gateway</th>
<th>Security</th>
<th>Monitor</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpnphone-vpn</td>
<td>vpnphone-gw</td>
<td>Custom</td>
<td>On</td>
<td>Edit</td>
</tr>
</tbody>
</table>

Step 24. XAuth Configuration – XAuth Server Settings
The Netscreen-50 has a “local” XAuth server integrated within the ScreenOS operating system. Alternatively, an external Radius server can be used. These Application Notes implement the “local” ScreenOS XAuth server. This step configures the default settings of the local XAuth server.

From the left navigation menu, select **VPNs > AutoKey Advanced > XAuth Settings**. Configure the highlighted fields shown below. All remaining fields can be left as default. Click **Apply** when complete.

Select the **IP Pool Name** created in Step 10 from the drop-down menu. This defines the IP Address range used when IP addresses are dynamically assigned to the Avaya VPNremote Phone by the XAuth server during IKE setup.
Step 25. XAuth Configuration – IKE Gateway Settings

From the left navigation menu, select VPNs > AutoKey Advanced > Gateway. The IKE gateway created in Steps 18 - 19 is displayed as shown below.

Select Xauth under the Configure column for the vpnphone-gw IKE gateway.

<table>
<thead>
<tr>
<th>Name</th>
<th>Peer Type</th>
<th>Address/ID/User Group</th>
<th>Local ID</th>
<th>Security Level</th>
<th>Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpnphone-gw</td>
<td>Dialup</td>
<td>vpnphone-grp</td>
<td></td>
<td>Custom</td>
<td>Edit Xauth</td>
</tr>
</tbody>
</table>

Step 26. XAuth Configuration – IKE Gateway Settings Continued

Configure the highlighted fields shown below. All remaining fields can be left as default. Click OK when complete to save settings.

- XAuth Server
 - Allowed Authentication Type: Generic
 - CHAP Only
 - CHAP & PAP

- Use Default Xauth Settings

- Local Authentication
 - Allow Any
 - User
 - User Group: remoteuser-grp

- External Authentication
 - Allow Any
 - User
 - User Group

- Bypass Authentication

- XAuth Client
 - Allowed Authentication Type: Any
 - CHAP Only
 - SecurID

- User Name
- Password

- Update DHCP Server Prefix Delegation to IPv6 Interfaces

- Interface
 - SLA ID
 - SLA Length
 - Action: Add

- No entry available
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 27. | **Policies**
Security policies need to be created that will define what traffic is allowed to flow through the VPN tunnel. A policy was manually created for the traffic flowing from the Untrust zone to the Trust zone. Based on the options selected for this policy, the Netscreen-50 was instructed to create a matching policy for the Trust to Untrust direction.

To create the policy in the Untrust to Trust direction, navigate to **Policies** from the left navigation menu. Any currently configured policies are displayed.

On the top of the **Policies** page, select **Untrust** from the **From** drop-down menu and **Trust** from the **To** drop-down menu. Click the **New** button. |

![Policies (From All zones To All zones) Table](image)
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 28. | **Policies Continued**
Configure the highlighted fields shown below. All remaining fields can be left as default.

Enter a descriptive policy **Name** to easily identify this policy. The example below shows a policy for traffic that matches the criteria of **Source Address** of **Dial-Up VPN**, any **Destination Address** and any **Service**. Selecting **Dial-Up VPN** as the **Source Address** defines the VPN tunnel as the traffic originator.

The **Action** field defines the action to be taken when traffic matches the above criteria. Selecting **Tunnel** from the **Action** field drop-down menu indicates traffic will be allowed and associated with the particular VPN Tunnel specified in the **Tunnel VPN** field. Select **vpnphone-vpn** from the **Tunnel VPN** drop-down menu. This is the VPN tunnel defined for the Avaya VPNremote Phones.

Check the **Modify matching bidirectional VPN policy** box to have the Netscreen-50 automatically create a matching VPN policy for traffic flowing in the opposite direction. Click **OK** to save. |
6. Configure XtremeSat
The configuration of XtremeSat is done by Clear Channel Satellite and is not expected to be done by the end user or a third party technician. This includes configuration of the SIT and dish alignment if using a fixed dish. The auto-acquisition dish does not require manual alignment. The auto-acquisition dish will automatically align with the satellite signal once it is powered up and deployed.

7. Configure Linksys BEFSX41 Broadband Firewall Router
This section describes the configuration of the Linksys BEFSX41 Broadband Firewall Router. This section assumes the Linksys router has been installed as described in [12] and starts with the factory defaults.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Login</td>
</tr>
<tr>
<td></td>
<td>The Linksys router is configured via a Web interface. Connect a PC configured for DHCP to any port on the private side of the router. Launch a Web browser and enter the IP address of the Linksys router in the URL field. Log in with the appropriate user name and password.</td>
</tr>
</tbody>
</table>
Step 2: Internet Setup

After logging in, the Basic Setup page is displayed. Under **Internet Setup**, select **Static IP** for the **Internet Connection Type**. Enter the values provided by Clear Channel Satellite for the **IP Address**, **Subnet Mask**, and **Default Gateway** fields.

![Internet Setup Configuration](image)

- **IP Address**: 192.168.100.66
- **Subnet Mask**: 255.255.255.248
- **Default Gateway**: 192.168.100.65
- **DNS 1**: 0.0.0.0
- **DNS 2**: 0.0.0.0
- **DNS 3**: 0.0.0.0

Optional Settings (required by some ISPs):
- **Host Name**
- **Domain Name**
- **MTU**
3. Local Network Setup

Scroll down to the **Network Setup** section of the page. Enter an IP address for the router that will be used on the private side of the device in the **Local IP Address** field and a corresponding subnet mask in the **Subnet Mask** field. The Avaya VPN remote Phones will be configured with static IP addresses. Thus, disable the DHCP server of the router by clicking the **Disable** radio button next to the **Local DHCP Server** field. Select the appropriate **Time Zone** for the location from the pull-down menu. Default values can be used for all other fields. Click the **Save Settings** button to complete the configuration.

Network Setup

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local IP Address</td>
<td>192.168.9.9</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Local DHCP Server</td>
<td>Disable</td>
</tr>
<tr>
<td>Start IP Address</td>
<td>192.168.100.01</td>
</tr>
<tr>
<td>Number of Addresses</td>
<td>50</td>
</tr>
<tr>
<td>Default NTP Server</td>
<td>Selected</td>
</tr>
</tbody>
</table>

8. Configure Avaya MCS – Avaya C363T-PWR Converged Stackable Switch

This section describes the Avaya C363T-PWR Converged Stackable Switch configuration as part of Avaya MCS. This section assumes the Avaya C363T-PWR has been installed using the procedures described in [6]. There is no additional configuration to be performed. The switch uses the factory defaults of all ports on a single VLAN (VLAN 1). No layer 3 routing is enabled.
9. Configure Avaya MCS – Avaya VPNremote Phone

The Avaya VPNremote Phone configuration can be administered centrally from an HTTP/TFTP server or locally on the phone. These Application Notes utilize the local phone configuration method. The following steps describe how to configure the Avaya VPNremote Phone VPN parameters locally from the telephone.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1. | VPN Options Menu Access
There are two methods available to access the **VPN Options** menu from the Avaya VPNremote Phone.

During Telephone Boot:
During the Avaya VPNremote Phone boot up, the option to press the * key to enter the local configuration mode is displayed on the telephone screen as shown below.

![DHCP field](image)

When the * key is pressed, several configuration parameters are presented such as the phone’s IP address, the Call Server’s IP address, etc. Press the # key to accept the current settings, or enter an appropriate value and press the # key. The final configuration option displayed is the **VPN Start Mode** option shown below. Press the * key to enter the **VPN Options** menu.

![VPN Start Mode Boot](image)

During Telephone Operation:
While the Avaya VPNremote Phone is in an operational state, registered with Avaya Communication Manager, press the following key sequence on the telephone to enter VPN configuration mode:

Mute-V-P-N-M-O-D-# (Mute-8-7-6-6-6-3-#)

The following is displayed:

![VPN Start Mode Boot](image)

Press the * key to enter the **VPN Options** menu. |
VPN Options
The **VPN Options** menu is displayed. The configuration values for the Avaya VPN remote Phone of user Tim, used in the sample configuration, are shown below. All values are case sensitive.

Press the ▶ hard button on the phone to access the next screen of configuration options. Phone models with larger displays (e.g., 4621SW) will present more configuration options per page.

<table>
<thead>
<tr>
<th>Configuration Options</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name:</td>
<td>Tim</td>
<td>User created in Netscreen-50 (Section 5, Step 12).</td>
</tr>
<tr>
<td>Password:</td>
<td>*******</td>
<td>Must match user password entered in Netscreen-50 (Section 5, Step 12).</td>
</tr>
<tr>
<td>Group Name:</td>
<td>vpnphone@avaya.com</td>
<td>IKE Identity created in Netscreen-50 (Section 5, Step 11).</td>
</tr>
<tr>
<td>Group PSK:</td>
<td>*******</td>
<td>Must match pre-shared key entered in Netscreen-50 (Section 5, Step 18).</td>
</tr>
<tr>
<td>VPN Start Mode:</td>
<td>BOOT</td>
<td>IPSec tunnel dynamically starts on phone power up.</td>
</tr>
<tr>
<td>Password Type:</td>
<td>Save in Flash</td>
<td>User is not prompted at phone boot up.</td>
</tr>
<tr>
<td>Encapsulation:</td>
<td>4500-4500</td>
<td>Default value to enable NAT traversal.</td>
</tr>
<tr>
<td>Syslog Server:</td>
<td>-</td>
<td>Locally log phone events.</td>
</tr>
<tr>
<td>IKE Parameters:</td>
<td></td>
<td>Must match IKE SA set in Netscreen-50 (Section 5, Step 19).</td>
</tr>
<tr>
<td>IKE ID Type:</td>
<td>USER-FQDN</td>
<td>Group Name format.</td>
</tr>
<tr>
<td>Diffie-Hellman Grp:</td>
<td>2</td>
<td>Can be set to “Detect” to accept Netscreen-50 settings.</td>
</tr>
<tr>
<td>IKE Xchg Mode:</td>
<td>Aggressive</td>
<td>Mode used for Phase 1 Negotiations.</td>
</tr>
<tr>
<td>IKE Config Mode:</td>
<td>Enable</td>
<td>Enables IKE.</td>
</tr>
</tbody>
</table>
Step 3. VPN Configuration Options Continued

<table>
<thead>
<tr>
<th>Configuration Options</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSec Parameters:</td>
<td>DH2-Any-Any</td>
<td>Must match IPSec proposals set in Netscreen-50 (Section 5, Step 22).</td>
</tr>
<tr>
<td>Diffie-Hellman Grp:</td>
<td>2</td>
<td>Can be set to “Detect” to accept Netscreen-50 settings.</td>
</tr>
<tr>
<td>Protected Net:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Net #1:</td>
<td>0.0.0.0/0</td>
<td>Access to all private nets.</td>
</tr>
<tr>
<td>Copy TOS:</td>
<td>Yes</td>
<td>RE-write TOS bit setting to outside IP header for QoS.</td>
</tr>
<tr>
<td>File Srvr:</td>
<td>10.75.10.52</td>
<td>TFTP/HTTP file server.</td>
</tr>
<tr>
<td>Connectivity Check:</td>
<td>First Time</td>
<td>Test initial IPSec connectivity.</td>
</tr>
<tr>
<td>QTest</td>
<td>Disable</td>
<td></td>
</tr>
</tbody>
</table>

Step 4. VPN Configuration Profile

The Avaya VPNremote Phone can interoperate with several VPN head-end vendors. The Avaya VPNremote Phone must be told which VPN head-end vendor will be used so the appropriate protocol dialogs can take place. This is done by setting the **VPN Configuration Profile** on the Avaya VPNremote Phone.

Press the Profile soft button at the bottom of the Avaya VPNremote Phones display while in the VPN Options mode. The VPN Configuration Profile options, shown below, are displayed. If a profile other than Juniper is already chosen, press the Modify soft button to display the following list.

- Avaya Security Gateway
- Cisco Xauth with PSK
- Juniper Xauth with PSK
- Generic PSK

Press the button aligned with the **Juniper Xauth with PSK** profile option, then press the Done soft button.
10. Interoperability Compliance Testing

This section describes the compliance testing used to verify the interoperability of Clear Channel Satellite XtremeSat with Avaya Mobile Communication System with the VPN remote Phone option to support remote telephone users. This section covers the general test approach and the test results.

10.1. General Test Approach

The general test approach was to make varying types of calls through XtremeSat and exercise common PBX features. Calls were made between Avaya MCS and the main site. All functionality listed below was tested using the one meter fixed dish.

10.2. Test Results

XtremeSat passed compliance testing. The following features and functionality were verified. Any observations related to these tests are listed at the end of this section.

- Outbound calls from Avaya MCS to the main site.
- Inbound calls from the main site to Avaya MCS.
- Intra-site calls between Avaya MCS endpoints.
- PBX features including Hold, Transfer, Call Forwarding and Conference.
- Proper DTMF tone detection.
- Voice mail and message waiting indicators (MWI).
- Internet access.
- Proper system recovery after a SIT restart and loss of IP connection.

The following observations were made during the compliance test.

1. A noticeable delay of one to two seconds was experienced on each call. This is expected with the known latency of a satellite link.
2. Since the voice traffic is routed over the Internet, there is no mechanism to ensure that voice traffic is given priority over data traffic.
3. It was observed that it was not necessary to disable IP-IP Direct Audio for the specific configuration and test cases covered in the compliance test as was recommended in the Avaya VPN remote Phone Release Notes [9] when using a Juniper Networks Netscreen device at the enterprise. However, if a user experiences no audio for calls between Avaya VPN remote Phones then IP-IP Direct Audio should be disabled in the IP network region where the Avaya VPN remote Phones reside.
11. Verification Steps

The following steps may be used to verify the configuration:

- From a PC on the Internet, ping the public IP addresses of the SIT and Linksys router to verify data connectivity inward to the Linksys router.
- From a PC connected to the Avaya VPNremote Phone, ping the public IP addresses of the SIT and Linksys router to verify data connectivity outward to the Linksys router.
- From a PC connected to the Avaya VPNremote Phone, verify that a web browser can be used to access a public Internet website.
- From the Avaya Communication Manager SAT, use the `status station` command to verify that the Avaya VPNremote Phone is in-service.
- Verify that calls can be placed from an Avaya VPNremote Phone to the main site.
- Verify that calls can be placed from the main site to an Avaya VPNremote Phone.

12. Support

For technical support on XtremeSat, contact Clear Channel Satellite via the support link at www.clearchannelsatellite.net.

13. Conclusion

Clear Channel Satellite XtremeSat passed compliance testing. These Application Notes describe the procedures required to configure Avaya Mobile Communication System to interoperate with Clear Channel Satellite XtremeSat to support remote users using Avaya VPNremote Phones as shown in Figure 1.
14. Additional References

[12] Linksys Broadband Firewall Router with 4-Port Switch/VPN Endpoint User Guide, Model BEFSX41.

Product documentation for Avaya products may be found at http://support.avaya.com.

Product documentation for the Linksys router can be obtained from http://www.linksys.com.

Product documentation for XtremeSat can be obtained from Clear Channel Satellite.
Appendix A: Avaya C363T-PWR Configuration File

Included below is the Avaya C363T-PWR Converged Stackable Switch configuration file used during the compliance testing for the switch at the main site. It can be displayed on the switch by using the `show run` command.

```
#!#$@ DO NOT REMOVE THIS LINE - Avaya Inc. C360 Switch - Router configuration
!
Avaya Inc. C360 Switch - Router configuration
! version 4.5.14
set vlan  1 name "fw"
set vlan  2 name "voice"
set vlan  3 name "data"
set vlan  4 name "wan"
set vlan  5 name "satellite"
!
ip bootp-dhcp relay
!
interface "IPI1"
ip vlan name "fw"
ip address 10.75.1.1 255.255.255.0
ip bootp-dhcp server 10.75.10.100
!
interface "IPI2"
ip vlan name "voice"
ip address 10.75.5.1 255.255.255.0
ip bootp-dhcp server 10.75.10.100
!
interface "IPI3"
ip vlan name "data"
ip address 10.75.10.1 255.255.255.0
ip bootp-dhcp server 10.75.10.100
!
interface "IPI5"
ip vlan name "satellite"
ip address 192.168.20.2 255.255.255.0
!
ip default-gateway 10.75.1.254 1 low
ip route  10.9.9.0  255.255.255.0  192.168.20.1  1 low
ip route  100.100.100.0 255.255.255.0 192.168.20.1 1 low
!
!
#! End of Configuration File
```
Appendix B: NetScreen-50 Configuration File
Included below is the Juniper Networks NetScreen-50 configuration file used during the compliance testing at the main site. It can be displayed on the NetScreen-50 by using the `get configuration` command.

```
set clock timezone 0
set vrouter trust-vr sharable
set vrouter "untrust-vr"
exit
set vrouter "trust-vr"
unset auto-route-export
exit
unset alg h323 enable
set auth-server "Local" id 0
set auth-server "Local" server-name "Local"
set auth default auth server "Local"
set auth radius accounting port 1646
set admin name "netscreen"
set admin password "nKVUM2rwMUzPcrkG5sWIHdCtqkAibn"
set admin auth timeout 10
set admin auth server "Local"
set admin format dos
set zone "Trust" vrouter "trust-vr"
set zone "Untrust" vrouter "trust-vr"
set zone "DMZ" vrouter "trust-vr"
set zone "VLAN" vrouter "trust-vr"
set zone "Untrust-Tun" vrouter "trust-vr"
set zone "Trust" tcp-rst
set zone "Untrust" block
unset zone "Untrust" tcp-rst
set zone "MGT" block
set zone "DMZ" tcp-rst
set zone "VLAN" block
unset zone "VLAN" tcp-rst
set zone "Untrust" screen tear-drop
set zone "Untrust" screen syn-flood
set zone "Untrust" screen ping-death
set zone "Untrust" screen ip-filter-src
set zone "Untrust" screen land
set zone "V1-Untrust" screen tear-drop
set zone "V1-Untrust" screen syn-flood
set zone "V1-Untrust" screen ping-death
set zone "V1-Untrust" screen ip-filter-src
set zone "V1-Untrust" screen land
set interface "ethernet1" zone "Trust"
set interface "ethernet2" zone "DMZ"
set interface "ethernet3" zone "Untrust"
unset interface vlan1 ip
set interface ethernet1 ip 192.168.20.1/24
set interface ethernet1 nat
set interface ethernet3 ip 192.168.105.232/27
set interface ethernet3 route
unset interface vlan1 bypass-others-ipsec
unset interface vlan1 bypass-non-ip
```
clearMcsVPNpho

set interface ethernet1 ip manageable
set interface ethernet3 ip manageable
set interface ethernet3 manage ping
unset flow no-tcp-seq-check
set flow tcp-syn-check
set pki authority default default scep mode "auto"
set pki x509 default cert-path partial
set ippool "Remote-User-IP" 100.100.100.1 100.100.100.50
set user "Terry" uid 4
set user "Terry" type xauth
set user "Terry" password "RR6x1Sb9NLYIkVsSb7CXDPI5VOny4Unuxg=="
unset user "Terry" type auth
set user "Terry" "enable"
set user "Tim" uid 2
set user "Tim" type xauth
set user "Tim" password "Hy8vHd0qNZnl08svuCC6SyN3Rcn+c304dQ=="
unset user "Tim" type auth
set user "Tim" "enable"
set user "vpnphone-ike" uid 1
set user "vpnphone-ike" ike-id u-fqdn "vpnphone@avaya.com" share-limit 35
set user "vpnphone-ike" type ike
set user "vpnphone-ike" "enable"
set user-group "remoteuser-grp" id 2
set user-group "remoteuser-grp" user "Terry"
set user-group "remoteuser-grp" user "Tim"
set user-group "vpnphone-grp" id 1
set user-group "vpnphone-grp" user "vpnphone-ike"
set ike gateway "vpnphone-gw" dialup "vpnphone-grp" Aggr outgoing-interface "ethernet3" preshare "pISB+ehxNLmuns6zhCxytrwu+nCoDhLDg==" proposal "pre-g2-3des-md5"
unset ike gateway "vpnphone-gw" nat-traversal udp-checksum
set ike gateway "vpnphone-gw" nat-traversal keepalive-frequency 5
set ike gateway "vpnphone-gw" xauth server "Local" user-group "remoteuser-grp"
set ike gateway "vpnphone-gw" xauth server auth-method chap pap
unset ike gateway "vpnphone-gw" xauth do-edipi-auth
set ike respond-bad-spi 1
unset ike ikeid-enumeration
unset ike dos-protection
unset ipsec access-session enable
set ipsec access-session maximum 5000
set ipsec access-session upper-threshold 0
set ipsec access-session lower-threshold 0
set ipsec access-session dead-p2-sa-timeout 0
unset ipsec access-session log-error
unset ipsec access-session info-exch-connected
unset ipsec access-session use-error-log
set xauth lifetime 5
set xauth default ippool "Remote-User-IP"
set vpn "vpnphone-vpn" gateway "vpnphone-gw" replay tunnel idletime 0 proposal "g2-esp-aes128-sha"
set vpn "vpnphone-vpn" monitor
set url protocol websense
exit
set policy id 1 name "VPNPhones" from "Untrust" to "Trust" "Dial-Up VPN" "Any" "ANY" tunnel vpn "vpnphone-vpn" id 1 pair-policy 2 log
set policy id 1
exit
set policy id 2 name "VPNphones" from "Trust" to "Untrust" "Any" "Dial-Up VPN" "ANY" tunnel vpn "vpnphone-vpn" id 1 pair-policy 1 log
set policy id 2
exit
set nsmgmt bulkcli reboot-timeout 60
set ssh version v2
set config lock timeout 5
set snmp port listen 161
set snmp port trap 162
set vrouter "untrust-vr"
exit
set vrouter "trust-vr"
unset add-default-route
set route 192.168.1.0/24 interface ethernet1 gateway 192.168.20.2
set route 0.0.0.0/0 interface ethernet3 gateway 192.168.105.225
set route 10.75.0.0/16 interface ethernet1 gateway 192.168.20.2 preference 20
exit
set vrouter "untrust-vr"
exit
set vrouter "trust-vr"
exit
Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners. The information provided in these Application Notes is subject to change without notice. The configurations, technical data, and recommendations provided in these Application Notes are believed to be accurate and dependable, but are presented without express or implied warranty. Users are responsible for their application of any products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the full title name and filename, located in the lower right corner, directly to the Avaya DevConnect Program at devconnect@avaya.com.