

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

1 of 11
EP-JBossAS-JMS

Avaya Solution & Interoperability Test Lab

Application Notes for Java Message Service (JMS)
Integration between the Avaya Event Processor and JBoss
Messaging - Issue 1.0

 Abstract

These Application Notes describe a sample configuration for Java Message Service (JMS)
integration between the Avaya Event Processor (EP) and JBoss Messaging. JBoss Messaging
is an enterprise messaging platform that supports JMS and is installed on the JBoss
Application Server (AS). JBoss Messaging implements a JMS provider, which makes
available JMS connection factories and destinations (queues and topics) for JMS-capable
applications to use in exchanging JMS messages. In the context of the JMS architecture, the
Avaya EP is a JMS-capable application that accesses JMS destinations on JBoss Messaging to
exchange data with other JMS-capable applications.

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

2 of 11
EP-JBossAS-JMS

1. Introduction
These Application Notes describe a sample configuration for Java Message Service (JMS)
integration between the Avaya Event Processor (EP) and JBoss Messaging. The JMS API is an
enterprise messaging tool that allows Java 2 Enterprise Edition (J2EE) applications to exchange
data reliably and asynchronously. JMS-capable applications can be created to integrate
heterogeneous enterprise applications and systems in a loosely-coupled manner, allowing the
applications and systems to exchange data independent of the respective native data formats.

JBoss Messaging is an enterprise messaging platform that supports JMS and is installed on the
JBoss Application Server (AS). JBoss Messaging implements a JMS provider, which makes
available JMS connection factories and destinations (queues and topics) for JMS-capable
applications to use in exchanging JMS messages. In the context of the JMS architecture, the
Avaya EP is a JMS-capable application that accesses JMS destinations on JBoss Messaging.
Upon reception of a JMS message from a JMS destination on JBoss Messaging, the Avaya EP
can extract relevant data from the message and insert the data into one or more Avaya EP
“Streams”. Similarly, the Avaya EP can extract data from one or more Avaya EP Streams and
send the data in a JMS message to another JMS destination on JBoss Messaging.

2. Configuration
The sample configuration used in these Application Notes is shown in Figure 1.

135.8.139.0/24

.191

Avaya Event Processor
Server

.228

JBoss Application
Server with JBoss

Messaging

JMS-capable
Application/System

Figure 1: Configuration

In the sample configuration, the JBoss AS and JBoss Messaging are installed on a Microsoft
Windows 2003 Server, and the Avaya EP is installed on a Red Hat Enterprise Linux ES 4.0
server. JMS-capable applications and the Avaya EP exchange data by sending and receiving
JMS messages to and from one or more specified JMS destinations configured on JBoss
Messaging. In these Application Notes, JMS destination queues are configured on JBoss
Messaging; consult the JBoss Messaging documentation [3] for guidance on configuring JMS
destination topics.

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

3 of 11
EP-JBossAS-JMS

3. Equipment and Software Validated
The following equipment and software were used for the sample configuration:

Equipment & Software Version
Avaya Event Processor running on Red Hat Enterprise
Linux ES Release 4.0 (Nahant Update 5) Server

2.0.110_GA_26

JBoss Application Server 4.2.2 GA
JBoss Messaging 1.4.0 SP1

Table 1: Equipment/Software List

4. Avaya Event Processor

4.1. Event Processing Language
This section describes the Event Processing Language (EPL) statements for configuring the
Avaya EP to receive and send JMS messages from and to JMS destinations on JBoss Messaging.
The EPL statements may be executed dynamically on a running Avaya EP server instance, or
saved in EPL files. EPL files are saved in the [Avaya EP installation directory]/eplserver/[Avaya
EP server instance]/engine/epl directory, and are automatically executed when the Avaya EP
server instance is started. Consult the Avaya EP documentation [1][2] for further details on EPL
structure and syntax, and EPL files.

Step Description
1. Create a JMS Pool in the Avaya EP that accesses a JMS connection factory on JBoss

Messaging, using the following parameters:
• initialContextFactory – ‘org.jnp.interfaces.NamingContextFactory’
• jndiURL – ‘jnp://<IP address, hostname, or FQDN of the JBoss AS>:1099’
• JMSFactory – name of JMS connection factory configured on JBoss Messaging in Section

5 Step 1.

The sample EPL statement below creates a Resource of type “JMS_POOL” named
“MyJMSPool” that accesses a JMS connection factory named “jms/ConnFactory1” on JBoss
Messaging.

CREATE RESOURCE MyJMSPool JMS_POOL
{
 JMSFactory 'jms/ConnFactory1',
 acknowledgeMode 'AUTO_ACKNOWLEDGE',
 initialContextFactory 'org.jnp.interfaces.NamingContextFactory',
 jndiURL 'jnp://135.8.139.228:1099',
 password '',
 poolSize 10,
 resourceName 'MyJMSPool',
 transacted false,
 username ''
}

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

4 of 11
EP-JBossAS-JMS

Step Description
2. Create a Stream in the Avaya EP into which data extracted from received JMS messages can be

inserted. The sample EPL statement below creates a Stream named “MyJMSReceiveStream”,
where each event (data record) in the Stream will consist of two fields, “ITEM” and “PRICE”.
Note that each field name must match a name-value pair in the received JMS message.

CREATE STREAM system:MyJMSReceiveStream
TYPE {
 ITEM String,
 PRICE Double
}

3. Create a Stream Provider in the Avaya EP that receives JMS messages from a JMS destination
on JBoss Messaging, and inserts the data in the JMS messages into the Stream configured in
Step 2. Configure the Stream Provider with the built-in type “JMS_PROVIDER” and the
following parameters:
• jmsDestination – name of JMS destination queue or topic configured on JBoss Messaging

in Section 5 Step 2 from which the Avaya EP will receive JMS messages.
• jmsDomain – ‘QUEUE’ or ‘TOPIC’.
• jmsMessageType – ‘MapMessage’.
• poolName – name of JMS Pool configured in Step 1.
• STREAM – name of Stream configured in Step 2.

The sample EPL statement below creates a Stream Provider of type “JMS_PROVIDER” named
“MyJMSReceiveStreamProvider” that receives JMS messages of type MapMessage from the
JMS queue “jms/Queue1” on JBoss Messaging, and inserts the data in the JMS messages into
the “MyJMSReceiveStream” Stream.

CREATE STREAMPROVIDER system:MyJMSReceiveStreamProvider JMS_PROVIDER ON
STREAM system:MyJMSReceiveStream
{
 importAllHeaders true,
 jmsDestination 'jms/Queue1',
 jmsDomain 'QUEUE',
 jmsMessageType 'MapMessage',
 poolName 'MyJMSPool',
 selector '',
 useHeaderTimestamp true
}

4. Create a Stream in the Avaya EP from which data can be extracted and sent in JMS messages.
The sample EPL statement below creates a Stream named “MyJMSSendStream”, where each
event (data record) in the Stream will consist of two fields, “ITEM” and “PRICE”.

CREATE STREAM system:MyJMSSendStream
TYPE {
 ITEM String,
 PRICE Double
}

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

5 of 11
EP-JBossAS-JMS

Step Description
5. Create a Stream Listener in the Avaya EP that listens on the Stream configured in Step 4 and

sends the data in the Stream to another JMS destination on JBoss Messaging. Configure the
Stream Listener with the built-in type “JMS_LISTENER” and the following parameters:
• jmsDestination – name of JMS destination queue or topic configured on JBoss Messaging

in Section 5.Step 3 to which the Avaya EP will send JMS messages.
• jmsDomain – ‘QUEUE’ or ‘TOPIC’.
• jmsMessageType – ‘MapMessage’.
• poolName – name of JMS Pool configured in Step 1.
• STREAM – name of Stream configured in Step 4.

The sample EPL statement below creates a Stream Listener of type “JMS_LISTENER” named
“MyJMSSendStreamListener” that extracts data from the “MyJMSSendStream” Stream and
sends the data in JMS messages of type MapMessage to the JMS queue “jms/Queue2” on JBoss
Messaging.

CREATE STREAMLISTENER system:MyJMSSendStreamListener JMS_LISTENER ON STREAM
system:MyJMSSendStream
{
 exportAllAsHeaders false,
 jmsDestination 'jms/Queue2',
 jmsDomain 'QUEUE',
 jmsMessageType 'MapMessage',
 poolName 'MyJMSPool',
 useHeaderTimestamp true
}

4.2. JAR Files and Runtime Classpath
This section lists JAR files that must be included in the Avaya EP server classpath at runtime.
The JAR files must precede the “ep-classpath.jar” JAR file in the runtime classpath (see Step 3).

Step Description
1. Add the following JAR files to the [Avaya EP installation directory]/lib/third_party directory:

• jboss-remoting.jar
• log4j-1.2.15.jar (see Notes 2 and 3 below)
• jboss-messaging-client.jar
• jbossall-client.jar

• jboss-aop-jdk50.jar
• javassist.jar
• trove.jar

Notes:

1. In these Application Notes, a directory named “JBoss” was created in the [Avaya EP
installation directory]/lib/third_party directory and the above JAR files were placed in
the [Avaya EP installation directory]/lib/third_party/JBoss directory.

2. An Avaya-modified version of version 1.2.15 of log4j.jar must be used. Contact Avaya
to obtain this JAR file.

3. This JAR file must precede jboss-messaging-client.jar in the runtime classpath (see Step
2).

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

6 of 11
EP-JBossAS-JMS

Step Description
2. In the [Avaya EP installation directory]/bin directory, modify the “setEnv.sh” file, or copy the

“setEnv.sh” file to another name, and modify as follows. The modifications are in bold below:

JBOSS_CP=$LIB/third_party/JBoss/jboss-remoting.jar
JBOSS_CP=$JBOSS_CP:$LIB/third_party/JBoss/log4j-1.2.15.jar
JBOSS_CP=$JBOSS_CP:$LIB/third_party/JBoss/jboss-messaging-client.jar
JBOSS_CP=$JBOSS_CP:$LIB/third_party/JBoss/jbossall-client.jar
JBOSS_CP=$JBOSS_CP:$LIB/third_party/JBoss/jboss-aop-jdk50.jar
JBOSS_CP=$JBOSS_CP:$LIB/third_party/JBoss/javassist.jar
JBOSS_CP=$JBOSS_CP:$LIB/third_party/JBoss/trove.jar
export JBOSS_CP

BASE_CP=$CONF_CP:$TOOLS_CP:$EP_CP:$JBOSS_CP:$LIB/ep-classpath.jar
export BASE_CP

Note: For the Avaya EP development version running on a Microsoft Windows server, the
equivalent file is “setEnv.bat” and the equivalent modifications are in bold below:

SET JBOSS_CP=%LIB%/third_party/JBoss/jboss-remoting.jar
SET JBOSS_CP=%JBOSS_CP%;%LIB%/third_party/JBoss/log4j-1.2.15.jar
SET JBOSS_CP=%JBOSS_CP%;%LIB%/third_party/JBoss/jboss-messaging-client.jar
SET JBOSS_CP=%JBOSS_CP%;%LIB%/third_party/JBoss/jbossall-client.jar
SET JBOSS_CP=%JBOSS_CP%;%LIB%/third_party/JBoss/jboss-aop-jdk50.jar
SET JBOSS_CP=%JBOSS_CP%;%LIB%/third_party/JBoss/javassist.jar
SET JBOSS_CP=%JBOSS_CP%;%LIB%/third_party/JBoss/trove.jar

SET BASE_CP=%CONF_CP%;%TOOLS_CP%;%EP_CP%;%JBOSS_CP%;%LIB%/ep-classpath.jar

4.3. Startup Script
The [Avaya EP installation directory]/eplserver/[Avaya EP server instance]/bin/eplServer.sh file
(or eplServer.bat for the Avaya EP development version running on a Microsoft Windows
server) is a script for starting an Avaya EP server instance.

Step Description
1. If a copied and renamed “setEnv.sh” (or “setEnv.bat”) file was used in Section 4.2 Step 2, then

modify the default environment setting in the “eplServer.sh” (or “eplServer.bat”) file with the
name of the renamed file. For example:

Linux: . /usr/local/EP/bin/setEnvJBoss.sh

Windows: call “C:\Program Files\Avaya\Event Processor\bin\setEnvJBoss.bat”

2. If the Avaya EP is unable to resolve the hostname or FQDN of the JBoss AS, then add an entry
with the IP address, hostname, and FQDN of the JBoss AS to the /etc/hosts (Linux) or
C:\WINDOWS\system32\drivers\etc\hosts (Windows) file on the Avaya EP server.

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

7 of 11
EP-JBossAS-JMS

5. JBoss Messaging
This section briefly describes the steps for configuring a JMS connection factory and a JMS
destination queue on JBoss Messaging. Consult the JBoss Messaging documentation [3] for
further details on configuring JMS connection factories and destination queues and topics.

Step Description
1. Create a JMS connection factory on JBoss Messaging by adding a new ConnectionFactory

MBean configuration to the “connection-factories-service.xml” file on the JBoss AS. The
example below creates a JMS connection factory named “ConnFactory1” with a JNDI binding
of “jms/ConnFactory1”.

<mbean code="org.jboss.jms.server.connectionfactory.ConnectionFactory"

name="jboss.messaging.connectionfactory:service=ConnFactory1" xmbean-
dd="xmdesc/ConnectionFactory-xmbean.xml">
<constructor>
 <arg type="java.lang.String" value="MyClientID"/>
</constructor>
<depends optional-attribute

name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
<depends optional-attribute-

name="Connector">jboss.messaging:service=Connector,transport=bisocket</
depends>

<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="PrefetchSize">150</attribute>
<attribute name="DefaultTempQueueFullSize">200000</attribute>
<attribute name="DefaultTempQueuePageSize">2000</attribute>
<attribute name="DefaultTempQueueDownCacheSize">2000</attribute>
<attribute name="DupsOKBatchSize">5000</attribute>
<attribute name="SupportsFailover">false</attribute>
<attribute name="SupportsLoadBalancing">false</attribute>
<attribute

name="LoadBalancingFactory">org.jboss.jms.client.plugin.RoundRobinLoadB
alancingFactory</attribute>

<attribute name="StrictTck">true</attribute>
<attribute name="JNDIBindings">

<bindings>
<binding>jms/ConnFactory1</binding>

</bindings>
</attribute>

</mbean>

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

8 of 11
EP-JBossAS-JMS

Step Description
2. Create a JMS destination queue on JBoss Messaging by adding a new Queue MBean

configuration to the “destinations-service.xml” file on the JBoss AS. The example below
creates a JMS destination queue named “Queue1” with a JNDI name of “jms/Queue1”. In these
Application Notes, the Avaya EP is a consumer of JMS messages from this JMS queue, i.e., the
Avaya EP will receive JMS messages from this JMS queue.

<mbean code="org.jboss.jms.server.destination.QueueService"

name="jboss.messaging.destination:service=Queue,name=Queue1" xmbean-
dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute
name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
<depends>jboss.messaging:service=PostOffice</depends>

 <attribute name="SecurityConfig">
 <security>
 <role name="guest" read="true" write="true"/>
 <role name="publisher" read="true" write="true" create="false"/>
 <role name="noacc" read="false" write="false" create="false"/>
 </security>
 </attribute>
 <attribute name="JNDIName">/jms/Queue1</attribute>
</mbean>

3. Repeat Step 2 to create another JMS destination queue. The example below creates a JMS
destination queue named “Queue2” with a JNDI name of “jms/Queue2”. In these Application
Notes, the Avaya EP is a producer of JMS messages to this JMS queue, i.e., the Avaya EP will
send JMS messages to this JMS queue.

 <mbean code="org.jboss.jms.server.destination.QueueService"

name="jboss.messaging.destination:service=Queue,name=Queue1" xmbean-
dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute
name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
<depends>jboss.messaging:service=PostOffice</depends>

 <attribute name="SecurityConfig">
 <security>
 <role name="guest" read="true" write="true"/>
 <role name="publisher" read="true" write="true" create="false"/>
 <role name="noacc" read="false" write="false" create="false"/>
 </security>
 </attribute>
 <attribute name="JNDIName">/jms/Queue1</attribute>
</mbean>

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

9 of 11
EP-JBossAS-JMS

6. Verification Steps
The following steps may be used to verify the configuration:

• Configure a JMS-capable application to send JMS messages to the JMS queue (e.g.,
“jms/Queue1”) on JBoss Messaging from which the Avaya EPL application receives
JMS messages. From the JMS-capable application, send a JMS message to that JMS
queue and verify that the Avaya EPL application receives the message and inserts the
data into the appropriate Stream (e.g.,”MyJMSReceiveStream”).

• Configure the JMS-capable application to receive JMS messages from another JMS
queue (e.g., “jms/Queue2”) on JBoss Messaging to which the Avaya EPL application
sends JMS messages. Insert data into the appropriate Stream (e.g.,
“MyJMSSendStream”) and verify that the JMS-capable application receives a JMS
message from that JMS queue containing the inserted data.

Notes:
1. The Avaya EP Console web application may be used to view data in Streams and insert

data into Streams.
2. If an external JMS-capable application is not available, configure the Avaya EPL

application to send and receive JMS messages to and from the same JMS queue (i.e.,
loopback). For example, set the “jmsDestination” parameters in the Stream Provider and
Stream Listener configurations in Section 4.1 to the same JMS destination (e.g.,
“jms/Queue1”), and create the Event Definitions below in the Avaya EP to verify the
configuration.

CREATE EVENT DEFINITION system:SendEvent
ON
 CLOCK.SCHEDULE(NOW(), TIME(0,0,30))
THEN
 MyJMSSendStream.INSERT(
 ITEM=‘Shades’,
 PRICE=20.95
)

CREATE EVENT DEFINITION system:ReceiveEvent
ON
 MyJMSReceiveStream
THEN
 PRINT(‘Got input: ITEM=’

+ MyJMSReceiveStream.ITEM
+ ‘ PRICE=’ + MyJMSReceiveStream.PRICE

)

The “SendEvent” Event Definition inserts an event (data record) into the
“MyJMSSendStream” Stream every thirty seconds, and the “ReceiveEvent” Event
Definition prints the contents of each received event (data record) in the
“MyJMSReceiveStream” Stream. If the Stream Listener and Stream Provider in Section
4.1 are both configured to access the same JMS destination, then the following should be
printed approximately every thirty seconds:

Got input: ITEM=Shades PRICE=20.95

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

10 of 11
EP-JBossAS-JMS

7. Conclusion
These Application Notes described a sample configuration for Java Message Service (JMS)
integration between the Avaya Event Processor (EP) and JBoss Messaging. JBoss Messaging is
an enterprise messaging platform that supports JMS and is installed on the JBoss Application
Server (AS). JBoss Messaging implements a JMS provider, which makes available JMS
connection factories and destinations (queues and topics) for JMS-capable applications to use in
exchanging JMS messages. In the context of the JMS architecture, the Avaya EP is a JMS-
capable application that accesses JMS destinations on JBoss Messaging to exchange data with
other JMS-capable applications.

8. Additional References
The following document may be found under the [Avaya EP installation directory]/docs
directory on the Avaya EP server.

[1] “Getting Started with the Avaya Event Processor 2.0”

The following document may be obtained from http://support.avaya.com.

[2] “Avaya Event Processor 2.0 User’s Guide”, November 2007.

The following document may be obtained from http://labs.jboss.com.

[3] “JBoss Messaging 1.4 User’s Guide”, Version 1.4.0.SP1, October 31 2007.

RL; Reviewed:
SPOC 4/2/2008

Solution & Interoperability Test Lab Application Notes
©2008 Avaya Inc. All Rights Reserved.

11 of 11
EP-JBossAS-JMS

© 2008 Avaya Inc. All Rights Reserved.
Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and ™
are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the
property of their respective owners. The information provided in these Application Notes is
subject to change without notice. The configurations, technical data, and recommendations
provided in these Application Notes are believed to be accurate and dependable, but are
presented without express or implied warranty. Users are responsible for their application of any
products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the
full title and filename, located in the lower right corner, directly to the Avaya Solution &
Interoperability Test Lab at interoplabnotes@list.avaya.com

