Abstract

These Application Notes describe the configuration steps required to integrate the LumenVox Speech Engine with Avaya Voice Portal. The LumenVox Speech Engine is a standards-based speech recognizer that supports multiple languages and can perform speech recognition on audio data from any audio source. It also provides speech application developers with a development and runtime platform, allowing for dynamic language, grammar, audio format, and logging capabilities to customize every step of an application.

Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab.
1. Introduction

These Application Notes describe the configuration steps required to integrate the LumenVox Speech Engine with Avaya Voice Portal. The LumenVox Speech Engine is a standards-based speech recognizer that supports multiple languages and can perform speech recognition on audio data from any audio source. It also provides speech application developers with a development and runtime platform, allowing for dynamic language, grammar, audio format, and logging capabilities to customize every step of an application.

Figure 1 illustrates the configuration used for testing. In this configuration, Avaya Voice Portal interfaces with Avaya Communication Manager via H.323 and the LumenVox Speech Engine via Media Resource Control Protocol (MRCP). VoiceXML (VXML) scripts were run by Avaya Voice Portal and used the automatic speech recognition (ASR) engine in the LumenVox Speech Engine. Since the LumenVox Speech Engine does not support text-to-speech (TTS), an optional third-party TTS engine may be used if required by the application. A TTS engine was used during testing.

Figure 1: Configuration with Avaya Voice Portal and the LumenVox Speech Engine
1.1. Equipment and Software Validated

The following equipment and software were used for the sample configuration:

Equipment	Software
Avaya Voice Portal	4.0.0.0.2901
Avaya S8700 Servers with an Avaya G650 Media Gateway	Avaya Communication Manager 4.0 (R014x.00.1.731.2)
LumenVox Speech Engine	8.0.301
LumenVox MRCP Server	8.0.301
LumenVox License Server	8.0.301
Application Server – HTTP Server running Windows Server 2003	Microsoft Internet Information Services (IIS)
	5.1
2. Configure Avaya Communication Manager

This section describes the configuration of H.323 stations and the IP codec set for Avaya Voice Portal. This configuration also requires a C-LAN and Media Processor board for IP communication. This configuration is outside the scope of these application notes, but the reader may refer to [1] and [2] for additional information.

From the System Access Terminal (SAT), add an H.323 station for Avaya Voice Portal. A call to this station will be routed to Avaya Voice Portal which will run a VXML script that uses the LumenVox Speech Engine. In the station form, set the Type to 7434ND, provide a descriptive Name, set the Security Code, and set the IP SoftPhone field to y.

![Station Form](image)

Figure 2: Station Form

In the IP codec set form associated with the IP network region of the H.323 station, configured in **Figure 2**, set the Audio Codec field to the appropriate value. In this configuration, *G.711MU* was used.

![IP Codec Set Form](image)

Figure 3: IP Codec Set Form
3. Configure Avaya Voice Portal

This section covers the administration of Avaya Voice Portal. The following Avaya Voice Portal configuration steps will be covered:

- Configuring an H.323 VoIP connection
- Adding an MPP server
- Configuring the VoIP audio format (mu-law or a-law)
- Adding a speech server
- Adding applications
- Starting the MPP server

Avaya Voice Portal is configured via the Voice Portal Management System (VPMS) web interface. To access the web interface, enter http://<ip-addr>/VoicePortal as the URL in an internet browser, where <ip-addr> is the IP address of the VPMS. Log in using the Administrator user role. The screen shown in Figure 4 is displayed.

Note: All of the screens in this section are shown after the Avaya Voice Portal had been configured. The user should save the screen parameters as Avaya Voice Portal is configured.

![Figure 4: VPMS Main Screen](image-url)
Configure the H.323 VoIP Connection. To configure an H.323 connection, navigate to the VoIP Connections page and then click on the H.323 tab. In the H.323 Connection page shown in Figure 5, set the Gatekeeper Address to the IP address of the C-LAN in the Avaya G650 Media Gateway and the Gatekeeper Port to 1719. Next, configure the stations for Avaya Voice Portal, which map to the 7434ND stations configured in Avaya Communication Manager. In addition, set the Password for the stations and set the Station Type to Inbound and Outbound. In this configuration, only station 23802 was mapped to the Avaya Voice Portal application that used the LumenVox Speech Engine.

![H.323 Connection](image.png)

Figure 5: H.323 Connection
Add an MPP Server. Add the MPP server by navigating to the MPP Servers page by selecting the option from the left pane. In the MPP Server configuration page, specify a descriptive name and the Host Address of each MPP server. Also, specify the Maximum Simultaneous Calls supported by each MPP server. Figure 6 shows the configuration for the MPP server.

Figure 6: MPP Server
Configure the VoIP Audio Format. The VoIP Audio Format for the MPP server is configured in the VoIP Settings screen. The MPP Native Format field in Figure 7 is set to audio/basic for mu-law.

Figure 7: VoIP Settings
Add an ASR Server. To configure the ASR server, click on Speech Servers in the left pane, select the ASR tab, and then click Add. For the LumenVox Speech Engine, the Engine Type should be set to IBM WVS. Set the Network Address field to the IP address of the LumenVox Speech Engine and select the desired Languages to be supported. The other fields were set to their default values.

![Add ASR Server](image)

Add a TTS Server. Although the LumenVox Speech Engine does not support a TTS engine, a third-party TTS server that is supported by Avaya Voice Portal may be added in the TTS tab under the Speech Servers option in the left pane if it is required by the Avaya Voice Portal application. For further instructions on how to add a TTS server to Avaya Voice Portal, refer to [4].
Add an Application. On the Applications page, add an Avaya Voice Portal application. Specify a Name for the application, set the MIME Type field to the appropriate value (e.g., VoiceXML), and set the VoiceXML URL field to point to a VoiceXML application hosted in the application server. Next, specify the type of ASR and TTS servers to be used by the application and the called number that invokes the application. The Applications screen is shown in Figure 9.

![Applications Screen](image-url)

Figure 9: Applications
Start the MPP Server. Start the MPP server from the MPP Manager page shown in Figure 10. Select each MPP and then click the Start button. After the MPP is started, the Mode of the MPP should be Online and the State should be Running.

Figure 10: MPP Manager
4. Configure LumenVox Speech Engine

This section covers the configuration required for the LumenVox Speech Engine. These changes are contained in the `mrcp.config` file. The required changes are highlighted in bold. Refer to [5] for a complete reference for the LumenVox Speech Engine.

```plaintext
#--- this is the config file used by the Lumenvox Mrcp Server.  
# the format is very simple. 
# lines starting with '#' are comments and are ignored. 
# blank lines are also ignored. 
# valid lines have the format 'param = value'. 
# spaces are stripped from beginning of the line and  
# from around the equal sign. 
# PLEASE NOTE that the parameter names are case-sensitive. 
#---

# custom Log file name for the mrcp server
mrcp_server_log = MRCP_Log_Avaya.txt

# this is the only parameter that you really NEED to set. 
# all the others have acceptable defaults. 
# replace this number with your machine's IP address.
mrcp_server_ip = 192.45.122.35

# this parameter sets the TCP port on which the server will listen 
# for incoming RTSP requests.
mrcp_server_port = 554

# this parameter is the lowest numbered UDP port that will be used 
# for RTP and RTCP. two sequentially numbered ports will be used 
# per resource, one for RTP and the next for RTCP. 
# rtpbase must be an even number.
mrcp_server_rtpbase = 49922

# the maximum number of concurrent connections allowed. 
# can't be more than the number of resources. Atleast one 
# resource per connection
mrcp_server_connmax = 100
```
the maximum number of concurrent resources.
practically speaking, this number can not be greater than the
number of port licenses you have for your SRE.

mrcp_server_resmax = 200

if you are running the MrcpServer and SRE on different machines,
set this value to the IP address of the machine that is running
the SRE.

sre_ip = 192.45.122.35

set this value to the license type used by the speech
recognizer. Its possible values can be:
Auto - picks whatever license is available
VoxLite - picks only voxlite license
SpeechPort - picks only full speech port license

license_type = Auto

this is the time in seconds since the last request received
after which a session will automatically timeout.

sess_timeout_sec = 200

enable logging = 1(default) or 0

enable_logging = 1

enable_sre_logging = 1 or 0 (default)
enable or disable logging of response files in the Lang\Responses
Directory of of the Speech Recognition Engine

enable_sre_logging = 1

the ASR resource name string, such as "recognizer"(default),
"asr", etc

resource_string = media/recognizer

enable inc reco cseq = 1 or 0 (default)
During RECOGNIZE session request, the CSeq will be increment for
event including START-OF-SPEECH, RECOGNITION-COMPLETE if
enable inc reco cseq sets to 1. If this value sets to 0, the CSeq
will not be increment for those events which will be the same as
the RECOGNIZE methos's CSeq.

enable_inc_reco_cseq = 0

Default LumenVox Engine Specific Streaming Parameters

dtmf_payload_type=96
choose_model =1
enable_lattice_scoring =1
initial_silence_trimmed = 0
speech_complete_timeout =800
wind_back_time =1000
burst_thrsld =30
5. Interoperability Compliance Testing

This section describes the interoperability compliance testing used to verify Avaya Voice Portal VXML applications that use the ASR engine in the LumenVox Speech Engine. This section covers the general test approach and the test results.

5.1. General Test Approach

The interoperability compliance test included feature and serviceability testing. The feature testing focused placing calls to Avaya Voice Portal that ran VoiceXML applications that use ASR engine in the LumenVox Speech Engine and the LumenVox MRCP Server. The testing verified speech and DTMF tone recognition.

The serviceability testing focused on verifying the ability of the LumenVox Speech Engine to recover from adverse conditions, such as power failures and disconnecting cables to the IP network.

5.2. Test Results

All test cases passed. Avaya Voice Portal was successful in running applications that use the ASR engine of the LumenVox Speech Engine.

Figure 11: mrcp.config File

```
end_of_speech_timeout=20000
#nbest_length=4
confidence_thrsld=45
sensitivity_lvl=50
#speed_vs_accuracy=11 # not used at this time
#dtmf_term_char=#
no_input_timeout=10000
#dtmf_termination_timeout=50000
recognizer_start_timers=true
#recognition_timeout=60000
#dtmf_inter_digit_timeout=5000
snr_sensitivity_lvl=50
save_waveform=false
waveform_url_location=file:///c:/
barge_in_timeout=150000
```
6. Verification Steps

This section provides the verification steps that may be performed to verify that Avaya Voice Portal can run IVR applications that use the LumenVox Speech Engine.

1. From the VPMS web interface, verify that the MPP server is online and running in the MPP Manager page shown in Figure 12.

![Figure 12: MPP Manager](image-url)
2. From the VPMS web interface, verify that the ports on the MPP server are in service in the Port Distribution page shown in Figure 13.

![Port Distribution](image.png)

Figure 13: Port Distribution

3. Place a call to an Avaya Voice Portal extension that runs a VXML script that uses the LumenVox Speech Engine. Verify that the application answers the call and that the application is able to recognize the speech and DTMF tones input provided by the caller.
7. Support
To contact LumenVox by phone or access their website:

- **Phone:** (877) 977-0707
- **Web:** http://www.lumenvox.com

8. Conclusion
These Application Notes describe the configuration steps required to integrate the LumenVox Speech Engine with Avaya Voice Portal. All feature and serviceability test cases were completed successfully.

9. Additional References
This section references the product documentation that is relevant to these Application Notes.

