

Avaya Solution & Interoperability Test Lab

Application Notes for Brocade FastIron SuperX and GS Switches with an Avaya Telephony Infrastructure using Avaya Communication Manager Branch Edition in a Converged VoIP and Data Network - Issue 1.0

Abstract

These Application Notes describe the configuration of a Voice over IP (VoIP) solution consisting of Brocade FastIron SuperX and GS Switches with an Avaya Telephony Infrastructure using Avaya Communication Manager Branch Edition in a Converged VoIP and Data Network. Emphasis was placed on verifying the prioritization of VoIP traffic and voice quality in a converged VoIP and Data network scenario.

Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab.

1. Introduction

These Application Notes describe the configuration of a Voice over IP (VoIP) solution consisting of Brocade FastIron SuperX and GS Switches with an Avaya Telephony Infrastructure using Avaya Communication Manager Branch Edition. Compliance testing emphasis was placed on verifying the prioritization of VoIP traffic and voice quality in a converged VoIP and Data network scenario. Quality of Service (QoS) based on Layer 2 Priority (802.1p) and Layer 3 Differentiated Services (DiffServ) was implemented across the network to prioritize voice traffic over the LAN. The Avaya IP telephones get QoS priority settings from Avaya Communication Manager Branch Edition and are enforced in the network by the Brocade Switches. To verify VoIP traffic was given priority over data traffic, tests were performed by over-subscribing the LAN interfaces with low priority data traffic and verifying that acceptable voice quality was achieved when calls were routed over all of the LAN interfaces. Compliance testing included testing QoS, throughput, link aggregation, rapid spanning tree, load balancing, Open Shortest Path First (OSPF), and Direct IP Media connectivity using the G.711 codec.

1.1. Interoperability Compliance Testing

Interoperability compliance testing covered feature functionality, serviceability, and performance testing.

QoS testing verified that when the Brocade Switch interfaces are over subscribed with low priority data traffic, the higher priority VoIP media and signaling traffic still got through and achieved good voice quality. Prioritization of voice traffic was achieved by implementing Layer 3 DiffServ-based QoS and Layer 2 priority (801.p). Voice and data traffic were segmented in the enterprise network using VLANs. At the end of the performance test, it was verified that the network devices continued to operate successfully.

The telephony features verified to operate correctly included attended/unattended transfer, conference call participation, conference call add/drop, multiple call appearances, caller ID operation, call forwarding unconditional, call forwarding on busy, call Park, call pick-up, bridged call appearances, voicemail using , Message Waiting Indicator (MWI), and hold and return from hold

Serviceability testing was conducted to verify the ability of the Avaya/Brocade VoIP solution to recover from adverse conditions, such as power cycling network devices and disconnecting cables between the LAN interfaces. In all cases, the ability to recover after the network normalized was verified.

1.2. Support

Phone Support:

US: 1-877-887-2622

International: 408-207-1600 Email support: support@foundrynet.com

www.brocade.com/services-support/index.page

2. Reference Configuration

The configuration in **Figure 1** shows a single site converged VoIP and data network with multiple closets and labs configured with link aggregation, rapid spanning tree, load balancing and OSPF.

For compliance testing, a centralized corporate DHCP server was used. To better manage the different traffic types, the voice and data traffic were separated onto different VLANs.

2.1. Control Room

The control room consisted of a Brocade FastIron SuperX Switch, Avaya Communication Manager Branch Edition, one Avaya 9620 IP Telephone running Avaya one-X Deskphone SIP on VLAN Voice1, one Avaya 1616 IP Telephone running Avaya one-X Deskphone Value Edition on VLAN Voice1 and one Corporate DHCP/File server. The corporate site provided a DHCP/File server for assigning IP network parameters and to download settings to the Avaya IP telephones. The Brocade FastIron SuperX Switch supplied Power over Ethernet (PoE) power for the Avaya IP telephones and was configured to support link aggregation, rapid spanning tree, load balancing, VLANs, enforce QoS policies, and OSPF with the peer Brocade switches.

2.2. Lab-A

Lab-A consisted of a Brocade FastIron GS Switch, one and one Avaya 9620 IP Telephone running Avaya one-X Deskphone SIP and one Avaya 1616 IP Telephone running Avaya one-X Deskphone Value Edition on VLAN Voice2 and a PC on Datavlan2. The Brocade FastIron GS Switch supplied PoE power for the Avaya IP telephones and was configured to support link aggregation, rapid spanning tree, load balancing, VLANs, enforce QoS policies, and OSPF with the peer Brocade switches.

2.3. Closet-A

Closet-A consisted of a Brocade FastIron GS Switch. It was configured to support VLANs, rapid spanning tree and enforce QoS policies.

2.4. Closet-B

Closet-B consisted of a Brocade FastIron GS Switch, one Avaya 9620 IP Telephone running Avaya one-X Deskphone SIP and one Avaya 1616 IP Telephone running Avaya one-X Deskphone Value Edition on VLAN Voice1 and a PC on VLAN Datavlan1. The FastIron GS Switch supplied PoE power for the Avaya IP telephones and was configured to support link aggregation, rapid spanning tree, enforce QoS policies, and load balancing.

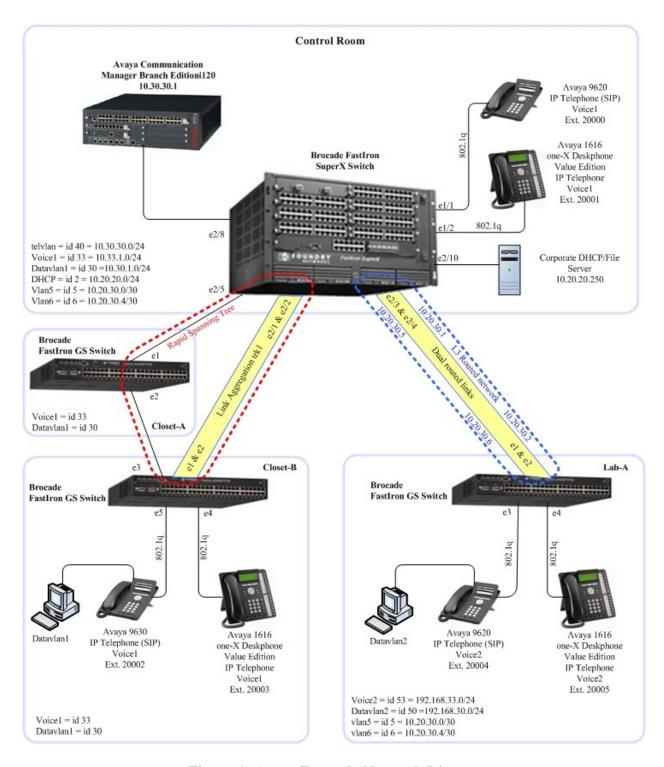


Figure 1: Avaya/Brocade Network Diagram

3. Equipment and Software Validated

The following equipment and software were used for the sample configuration provided:

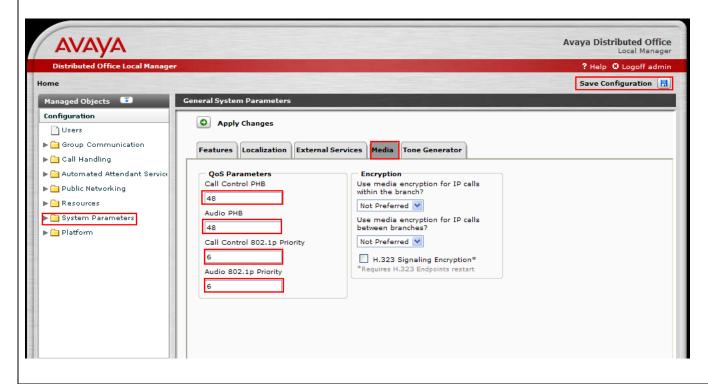
Equipment	Software/Firmware			
Avaya PBX Products				
Avaya Communication Manager Branch Edition i120	1.2.1_02.01-SP-2.0.8			
Avaya Telephony Sets				
Avaya 1600 Sarias ID Talanhanas	Avaya one-X Deskphone Value			
Avaya 1600 Series IP Telephones	Edition 1.0.3			
Avaya 9600 Series IP Telephones	Avaya one-X Deskphone SIP 2.0.0			
Brocade Products				
Brocade FastIron SuperX Switch	05.0.00T3e3			
Brocade FastIron GS Switch with routing enabled	04.3.01T7e3			
Brocade FastIron GS Switch	04.3.01T7e1			
MS Products				
Microsoft Windows 2003 Server	File/DHCP Service			

4. Avaya Communication Manager Branch Edition Configuration

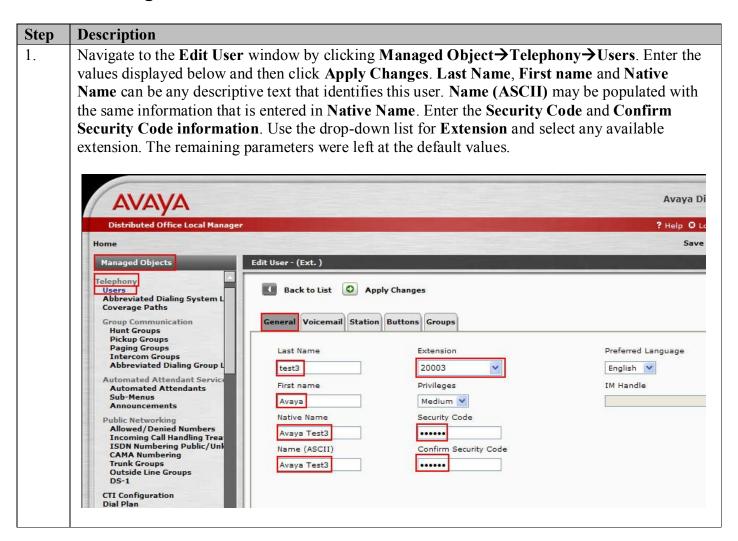
Avaya Communication Manager Branch Edition is administered via a web interface. In the sample network the Avaya Communication Manager Branch Edition was assigned the IP address 10.30.30.1 and the URL http://10.30.30.1 was used to access the administration interface. For information on how to access and setup a factory default system, refer to **Section 12** [1].

4.1. Configure QoS

IP networks were originally designed to carry data on a best-effort delivery basis, which meant that all traffic had equal priority and an equal chance of being delivered in a timely manner. As a result, all traffic had an equal chance of being dropped when congestion occurred. QoS is now utilized to prioritize VoIP traffic and should be implemented throughout the entire network.


In order to achieve prioritization of VoIP traffic, the VoIP traffic must be classified. Avaya Communication Manager Branch Edition and Avaya IP telephones support both 802.1p and DiffServ.

The DiffServ and 802.1p/Q values configured here will be downloaded to the Avaya H.323 IP Telephones via Avaya Communication Manager Branch Edition. Avaya SIP IP Telephones will get QoS settings by downloading the 46xxsettings file from the HTTP server. For more information on QoS settings please refer to [6].


Description

Navigate to the General System Parameters window by clicking System Parameters → Media. Set the following QoS Parameters:

- Call Control PHB Value to 48
- Audio PHB Value to 48
- Call Control 802.1p Priority to 6
- Audio 802.1p Priority to 6

4.2. Configure Station

Step **Description** 2. Navigate to the Voicemail tab by clicking Voicemail. Check the User has a voicemail mailbox on this system and Enable Password Change check boxes. Use the drop-down list for Mailbox **Type** to select "Regular". Press the **Station** tab to continue. **AVAYA** Distributed Office Local Manager Home **Managed Objects** Edit User - Avaya Test3 (Ext. 20003) Telephony Back to List Apply Changes Abbreviated Dialing System L Coverage Paths General Voicemail Station Buttons Groups **Group Communication Hunt Groups** Pickup Groups **Paging Groups** User has a voicemail mailbox on this system Intercom Groups **Abbreviated Dialing Group I Automated Attendant Service** Mailbox Type **Automated Attendants**

Outgoing Email Address (Fax messages will also be saved in the user's personal mailbox)

Regular

Enable Outcalling

Enable Broadcasting

✓ Enable Password Change

Sub-Menus

DS-1
CTI Configuration

Dial Plan

Announcements

CAMA Numbering

Trunk Groups Outside Line Groups

Feature Access Codes

Allowed/Denied Numbers Incoming Call Handling Trea ISDN Numbering Public/Unl

Public Networking

Step **Description** Navigate to the **Station** tab by clicking **Station**. Use the drop-down list for **Set Type** to select 3. "1608-H323" and use the drop-down list for **Coverage** to select "VoiceMail". The remaining parameters were left at the default values. Press the Buttons tab to continue. Avaya **AVAVA** Distributed Office Local Manager ? Help € Sa Managed Objects Edit User - Avaya Test3 (Ext. 20003) Telephony Back to List O Apply Changes Abbreviated Dialing System L Coverage Paths **Group Communication** General Voicemail Station Buttons Groups **Hunt Groups Pickup Groups** Paging Groups Coverage Hot Line Abbreviated Dialing List Intercom Groups Abbreviated Dialing Group I 1608-H323 VoiceMail 💙 **Automated Attendant Service** Abrv. Group Dialing List Hot Line Target Automated Attendants Sub-Menus

Extension to Cellular Cellular Number

Audible Message Waiting

Idle Appearance Preference

None 💙

Fax or Modem

✓ Call Waiting Indication

Announcements

Public Networking Allowed/Denied Numbers Incoming Call Handling Trea ISDN Numbering Public/Unl

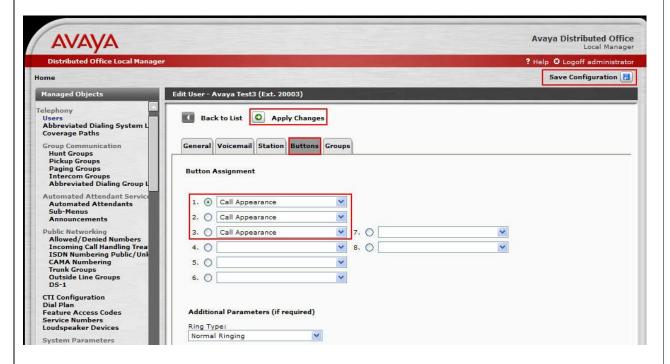
CAMA Numbering Trunk Groups Outside Line Groups DS-1

CTI Configuration Feature Access Codes Service Numbers

Loudspeaker Devices

System Parameters

V


Restrict Last Appearance

✓ Specific line FACs allowed

Step Description

4. Use the drop list for **Button Assignment 1 − 3** and select "Call Appearance". The remaining parameters were left at the default values. Click **Apply Changes** and then click **Save Configuration**.

Note the user may receive a message indicating the system is busy if **Save Configuration** is clicked immediately after **Apply Changes**. If that occurs, simply click **Save Configuration** after one or two minutes.

5. Repeat Steps 1 thru 4 for each Avaya IP Telephone.

5. Configure the Brocade Networks FastIron SuperX Switch in Control Room

This section addresses how to configure the Brocade FastIron SuperX Switch. The Brocade FastIron SuperX Switch was used as the core Layer 2/Layer 3 router and will enforce QoS policies support Link Aggregation, OSPF and spanning tree.

To configure the FastIron SuperX Switch, connect a PC or laptop to the serial port of the FastIron SuperX Switch. Run a terminal emulation program with the following configuration:

■ Bits per second: 9600

Data bits: 8Parity: NoneStop bits: 1

• Flow Control: None

1. Log into Brocade FastIron SuperX Switch.

~	. 1	T 1	T .T	~ •	7 0 1	~		. 1	• .	1		1
Connect to	tha	Uranda	Loctiron	Viinor V	Strutch	100	10 110100	thac	Innranriata	orodo	mtin	
COHIECTIO	1110	DIOCAGE	Pasifion	JUDEL A	Nawiicii	1 (1)2	HII HISHIIY	11115	11)1)11 ()1)11 (16)	CIECIE	7111114	15
Comittee to	CIIC	Dictac	I WOULD II	Caper.	L 0 11 10011.			,	tppropriate	or ca c	TICIO.	

Login:

Password:

FastIron SuperX Switch#

- 2. Enable the following features on the FastIron SuperX Switch.
 - Change the hostname
 - Enable global spanning tree
 - Create link aggregation trunk
 - Enable Rapid Spanning Tree admin-pt2pt-mac for uplink to other switches
 - Enable QoS
 - Set OoS Differentiated Services information
 - Create QoS access lists
 - Enable OSPF and set area
 - Enable Rapid Spanning Tree to ports

FastIron SuperX Switch# conf t

FastIron SuperX Switch(config)# hostname Control Room

Control Room(config)# global-stp

Control Room(config)# int eth 2/1

Control_Room(config-if-e1000-2/1)#link-aggregate configure key 11500

Control_Room(config-if-e1000-2/1)#link-aggregate active

Control_Room(config-if-e1000-2/1)#spanning-tree 802-1w admin-pt2pt-mac

Control Room(config)#int eth 2/2

Control_Room(config-if-e1000-2/2)#link-aggregate configure key 11500

Control Room(config-if-e1000-2/2)#link-aggregate active

Control Room(config)#qos mechanism strict

Control Room(config)#qos-tos map dscp-priority 46 48 to 7

Control Room(config)#qos-tos map dscp-priority 0 to 1

Control_Room(config)# access-list 101 permit ip any any dscp-matching 46 802.1p-priority-marking 7 internal-priority-marking 7

Control_Room(config)# access-list 101 permit ip any any dscp-matching 48 802.1p-priority-marking 7 internal-priority-marking 7

Control_Room(config)# access-list 101 permit ip any any dscp-matching 0 dscp-cos-mapping

Control Room(config)# access-list 101 permit ip any any

Control Room(config)# router ospf

Control Room(config-ospf-router)# area 10

Control Room(config-ospf-router) exit

Control Room(config)# int eth 2/5

Control Room(config-if-2/5)# spanning-tree 802-1w admin-pt2pt-mac

3. Write the running configuration to the startup configuration.

Control_Room(config)# write memory

- 4. Create and configure dual routed links to Lab-A.
 - Assign a VLAN ID for interface Ethernet 2/3
 - Assign a port to vlan 5
 - Enable Rapid Spanning Tree and assign priority 0
 - Create interface and assign an IP address for virtual interface 5
 - Add the Virtual Interface to OSPF area 10
 - Add the Virtual Interface to access list 101
 - Assign a VLAN ID for interface Ethernet 2/4
 - Assign a port to vlan 6
 - Enable Rapid Spanning Tree and assign priority 0
 - Create interface and assign an IP address for virtual interface 6
 - Add the Virtual Interface to OSPF area 10
 - Add the Virtual Interface to access list 101

```
Control Room(config)# # config t
Control Room(config)# vlan 5
Control Room(config-vlan-5)# tagged eth 2/3
Control Room(config-vlan-5)# spanning-tree 802-1w
Control Room(config-vlan-5)# spanning-tree 802-1w priority 0
Control Room(config-vlan-5)# router-interface ve 5
Control Room(config-vlan-5)# int ve 5
Control Room(config-if-ve5)# ip address 10.20.30.5 255.255.255.252
Control Room(config-if-ve5)# ip ospf area 10
Control Room(config-if-ve5)# ip access-group 101 in
Control Room(config-if-ve5)# exit
Control Room(config)# vlan 6
Control Room(config-vlan-6)# tagged eth 2/4
Control Room(config-vlan-6)# spanning-tree 802-1w
Control Room(config-vlan-6)# spanning-tree 802-1w priority 0
Control Room(config-vlan-6)# router-interface ve 6
Control Room(config-if-ve6)# int eth 2/4
Control Room(config-if-ve6)# ip address 10.20.30.1 255.255.252
Control Room(config-if-ve5)# ip ospf area 10
Control Room(config-if-ve5)# ip access-group 101 in
Control Room(config-if-ve6)# exit
```

- 5. Create and configure the telephony VLAN that all of the Avaya telephony equipment will run on.
 - Assign a VLAN ID 100 for the telephony VLAN
 - Assign ports to the telephony VLAN
 - Enable Rapid Spanning Tree and assign priority 0
 - Create the interface and assign an IP address for the virtual interface 100
 - Add VLAN to access-group
 - Add a helper-address for the telephony VLAN
 - Add the VLAN to OSPF area 10

Control Room# config t

Control Room(config)# vlan 100

Control Room(config-vlan-100)# untagged eth 1/23

Control Room(config-vlan-100)# spanning-tree 802-1w

Control Room(config-vlan-100)# spanning-tree 802-1w priority 0

Control Room(config-vlan-100)# router-interface ve 100

Control Room(config-vif-100) # ip address 10.30.30.254/24

Control Room(config-vif-100) # ip access-group 101 in

Control Room(config-vif-100) # ip helper-address 1 10.20.20.250

Control Room(config-vif-100) # ip ospf area 10

Control Room(config-vif-100) # exit

- 6. Create and configure the voice VLAN that will run between the control room and closets.
 - Assign a VLAN ID 33 for the voice VLAN
 - Assign ports to the voice1 VLAN
 - Enable Rapid Spanning Tree and assign priority 0
 - Create the virtual interface and assign an IP address for the virtual interface 33
 - Add VLAN to access-group
 - Add a helper-address for the voice1 VLAN
 - Add the VLAN to OSPF area 10

Control Room # config t

Control Room(config)# vlan 33

Control Room(config-vlan-33)# tagged eth 1/1 to 1/2 eth 2/1 to 2/2 eth 2/5

Control Room(config-vlan-33)# spanning-tree 802-1w

Control_Room(config-vlan-33)# spanning-tree 802-1w priority 0

Control Room(config-vlan-33)# router-interface ve 33

Control Room(config-vlan-33)#int ve 33

Control_Room(config-vif-33)# ip address 10.33.1.254/24

Control Room(config-vif-33)# ip access-group 101 in

Control Room(config-vif-33)# ip helper-address 1 10.20.20.250

Control Room(config-vif-33)# ip ospf area 10

Control Room(config-vif-33)# ip ospf passive

Control Room(config-vif-33) # exit

- 7. Create and configure the data VLAN that will run between the control room and closets.
 - Assign a VLAN ID for the data1 VLAN
 - Assign ports to the data VLAN
 - Enable spanning tree and assign priority 0
 - Create the interface and assign an IP address for the data VLAN
 - Add a helper-address for the data VLAN
 - Add the VLAN to OSPF area 10
 - Place interface 1/1 & 1/2 in dual mode and disable spanning tree

Control_Room(config)# vlan 30 Control_Room(config-vlan-30)# tagged eth 1/1 to 1/2 eth 2/1 to 2/2 eth 2/5 Control_Room(config-vlan-30)# spanning-tree 802-1w Control_Room(config-vlan-30)# spanning-tree 802-1w priority 0 Control_Room(config-vlan-30)# router-interface ve 30 Control_Room(config-vlan-30)# int ve 30

Control Room(config-vif-30) # ip address 10.30.1.254/24

Control_Room(config-vif-30) # ip helper-address 1 10.20.20.250

Control_Room(config-vif-30) # ip ospf area 10

Control_Room(config-vif-30) # ip ospf passive

Control_Room(config-vif-30) # exit

Control_Room(config)# int eth 1/1

Control Room(config-if-1/1) dual-mode 30

Control_Room(config-if-1/1) no spanning-tree

Control_Room(config-if-1/1) exit

Control_Room(config)# int eth 1/2

Control_Room(config-if-1/2) dual-mode 30

Control_Room(config-if-1/1) no spanning-tree

Control_Room(config-if-1/2) exit

- 8. Create and configure the DHCP VLAN.
 - Assign a VLAN ID for the DHCP VLAN
 - Assign ports to the DHCP VLAN
 - Enable spanning tree and assign priority 0
 - Create the interface and assign an IP address for the DHCP VLAN
 - Add the VLAN to OSPF area 10

```
Control_Room # config t
Control_Room(config)# vlan 2
Control_Room(config-vlan-2)# untagged eth 2/10
Control_Room(config-vlan-2)# spanning-tree 802-1w
Control_Room(config-vlan-2)# spanning-tree802-1w priority 0
Control_Room(config-vlan-2)# router-interface ve 2
Control_Room(config-vif-2) # ip address 10.20.20.1/24
Control_Room(config-vif-2) # ip ospf area 10
```

9. Write the running configuration to the startup configuration.

Control Room(config)# write memory

Control Room(config-vif-2) # exit

6. Configure the Brocade Networks FastIron GS Switch in Lab-A

This section addresses how to configure the Brocade FastIron GS Switch. Brocade FastIron GS Switch will enforce QoS policies support link aggregation, OSPF and spanning tree.

To configure the FastIron GS Switch, connect a PC or laptop to the serial port of the FastIron GS Switch. Run a terminal emulation program with the following configuration:

■ Bits per second: 9600

Data bits: 8Parity: NoneStop bits: 1

Flow Control: None

1. Log into Brocade FastIron GS Switch.

Connect to the Brocade FastIron GS Switch. Log in using the appropriate credentials.

Login:

Password:

FastIron GS Switch#

- 2. Enable the following features on the FastIron GS Switch.
 - Set the hostname of the switch
 - Enable global spanning tree and turn on rapid spanning tree for VLAN1
 - Enable QoS
 - Set QoS Differentiated Services information
 - Create OoS access list 101
 - Enable OSPF and set area 10

FastIron GS Switch # config t

FastIron GS Switch(config)# hostname Lab A

Lab A(config)# global-stp

Lab A(config)# vlan 1

Lab A(config-vlan-1)# spanning-tree 802-1w

Lab A(config-vlan-1)# exit

Lab A(config)# qos mechanism strict

Lab A(config)# qos-tos map dscp-priority 46 48 to 7

Lab A(config)# qos-tos map dscp-priority 0 to 1

Lab_A(config)# access-list 101 permit ip any any dscp-matching 48 802.1p-priority-marking 7

Lab_A(config)# access-list 101 permit ip any any dscp-matching 46 802.1p-priority-marking 7

Lab A(config)# access-list 101 permit ip any any dscp-matching 0

Lab A(config)# access-list 101 permit ip any any

Lab A(config)# router ospf

Lab A(config-ospf-router)# area 10

Lab A(config-ospf-router)# exit

3. Write the running configuration to the startup configuration.

Lab_A (config)# write memory

- 4. Create, configure and enable the dual routed links to Control Room.
 - Assign a VLAN ID for interface 0/1/1
 - Assign a port to vlan 5
 - Create virtual interface and assign an IP address
 - Add the virtual interface to OSPF area 10
 - Apply the access list
 - Turn spanning tree on
 - Assign a VLAN ID for interface 0/1/2
 - Assign a port to vlan 6
 - Create interface and assign an IP address
 - Add the virtual interface to OSPF area 10
 - Apply the access list
 - Turn spanning tree on

Lab A # configure t

- Lab_A (config)# vlan 5
- Lab A (config-vlan-5)# tagged eth 0/1/1
- Lab A (config-vlan-5)# router-interface ve 5
- Lab A (config-vlan-5)# exit
- Lab A (config)# int ve 5
- Lab_A (config-if-ve5)# ip address 10.20.30.6 255.255.255.252
- Lab_A (config-if-ve5)# ip ospf area 10
- Lab A (config-if-ve5)# ip access-group 101 in
- Lab A (config-if-ve5)# spanning-tree 802-1w
- Lab A (config-if-ve5)# exit
- Lab A (config)# vlan 6
- Lab A (config-vlan-6)# vlan 6
- Lab A (config-vlan-6)# tag eth 0/1/2
- Lab A (config-vlan-6)# router-interface ve 6
- Lab A (config)# int eth ve 6
- Lab A (config-if-ve6)# ip address 10.20.30.2 255.255.255.252
- Lab A (config-if-ve6)# ip ospf area 10
- Lab A (config-if-ve6)# ip access-group 101 in
- Lab A (config-if-ve6)# spanning-tree 802-1w
- Lab A (config-if-ve6)# exit

- 5. Create and configure the voice VLAN for Lab-A.
 - Assign a VLAN ID for the voice VLAN
 - Assign ports to the voice VLAN
 - Create the virtual interface and assign an IP address for the voice VLAN
 - Add a helper-address for the voice VLAN
 - Add the Virtual Interface to OSPF area 10
 - Add the Virtual Interface to access list 101

Lab A # config t

Lab A (config)# vlan 53

Lab A (config-vlan-53)# tagged eth 0/1/3 to 0/1/4

Lab A (config)-vlan-53)# router-interface ve 53

Lab A (config)-vlan-53)# int ve 53

Lab A (config-vif-53) # ip address 192.168.33.254/24

Lab A (config-vif-53) # ip helper-address 1 10.20.20.250

Lab_A (config-vif-53) # ip ospf area 10

Lab_A (config-vif-53) # ip ospf passive

Lab A (config-vif-53) # ip access-group 101 in

Lab A (config-vif-53) # exit

- 6. Create and configure the data VLAN for Lab-A.
 - Assign a VLAN ID for the data VLAN
 - Assign ports to the data VLAN
 - Create the virtual interface and assign an IP address for the data VLAN
 - Add a helper-address for the data VLAN
 - Add the VLAN to OSPF area 10
 - Apply access list 101

```
Lab A # config t
```

Lab A (config)# vlan 50

Lab A (config-vlan-50)# tagged eth 0/1/3 to 0/1/4

Lab A (config-vlan-50)# router-interface ve 50

Lab A (config-vlan-50)# int ve 50

Lab A (config-vif-50) # ip address 192.168.30.254/24

Lab A (config-vif-50) # ip helper-address 1 10.20.20.250

Lab A (config-vif-50) # ip ospf area 10

Lab_A (config-vif-50) # ip ospf passive

Lab_A (config-vif-50) # ip access-group 101 in

Lab A (config-vif-50) # exit

- 7. Configure ports for phones
 - Enable dual mode trunking on ports 0/1/3 and 0/1/4
 - Turn on inline power
 - Enable DCSP on the virtual interface
 - Disable spanning tree on the interface

Lab A (config)# int eth 0/1/3

Lab A (config-if-0/1/3)# dual-mode 50

Lab A (config-if-0/1/3)# inline power

Lab A (config-if-0/1/3)# trust dcsp

Lab_A (config-if-0/1/3)# no spanning-tree

Lab A (config)# int eth 0/1/4

Lab A (config-if-0/1/4)# dual-mode 50

Lab A (config-if-0/1/4)# inline power

Lab A (config-if-0/1/4)# trust dcsp

Lab A (config-if-0/1/4)# no spanning-tree

8. Write the running configuration to the startup configuration.

Lab A (config)# write memory

7. Configure the Brocade Networks FastIron GS Switch in Closet-B

This section addresses how to configure the Brocade FastIron GS Switch. Brocade FastIron GS Switch was used as the core Layer 2 switch and will enforce QoS policies support link aggregation and spanning tree.

To configure the FastIron GS Switch, connect a PC or laptop to the serial port of the FastIron GS Switch. Run a terminal emulation program with the following configuration:

■ Bits per second: 9600

Data bits: 8Parity: NoneStop bits: 1

• Flow Control: None

1. Log into Brocade FastIron GS Switch.

Connect to the Brocade FastIron GS Switch.	Log in using the appropriate credentials.

Login: Password:

FastIron GS Switch#

- 2. Enable the following features on the FastIron GS Switch.
 - Set the hostname of the switch
 - Create link aggregation trunk for ports 0/1/1 & 0/1/2
 - Enable spanning-tree for direct uplink switch ports
 - Enable QoS
 - Set QoS Differentiated Services information
 - Create QoS access list 101
 - Write memory

```
FastIron GS Switch # config t
FastIron GS Switch # hostname Closet B
Closet B(config)# int eth 0/1/1
Closet B (config-if-0/1/1)# link-aggregate configure key 11500
Closet B (config-if-0/1/1)# link-aggregate active
Closet B (config-if-0/1/1)# spanning-tree 802-1w admin-pt2pt-mac
Closet B(config)# int eth 0/1/2
Closet B (config-if-0/1/2)# link-aggregate configure key 11500
Closet B (config-if-0/1/2)# link-aggregate active
Closet B (config-if-0/1/2)# spanning-tree 802-1w admin-pt2pt-mac
Closet B (config-if-0/1/2)# exit
Closet B (config)# int eth 0/1/3
Closet B (config-if-0/1/3)# spanning-tree 802-1w admin-pt2pt-mac
Closet B (config)# gos mechanism strict
Closet B (config)# gos-tos map dscp-priority 48 46 to 7
Closet B (config)# qos-tos map dscp-priority 0 to 1
Closet B (config)# access-list 101 permit ip any any dscp-matching 46 priority-marking
Closet B (config)# access-list 101 permit ip any any dscp-matching 48 priority-marking
Closet B (config)# access-list 101 permit ip any any dscp-matching 0
Closet B (config)# access-list 101 permit ip any any
Closet B (config-if-0/1/1)# write memory
```

- 3. Create and configure the voice VLAN that will run between the control room and closets.
 - Assign VLAN ID 33 for the voice VLAN
 - Enable spanning-tree
 - Add ports to voice VLAN

```
Closet_B # config t
Closet_B (config)# vlan 33
Closet_B (config-vlan-33)# spanning-tree 802-1w
Closet_B (config-vlan-33)# tagged eth 0/1/1 to 0/1/5
```

- 4. Create and configure the data VLAN that will run between the control room and closets.
 - Assign a VLAN ID 30 for the data VLAN
 - Enable spanning-tree

Closet B (config-vlan-33)# exit

• Assign ports to the data VLAN

```
Closet_B # config t
Closet_B (config)# vlan 30
Closet_B (config-vlan-30)# spanning-tree 802-1w
Closet_B (config-vlan-30)# tagged eth 0/1/1 to 0/1/5
Closet_B (config-vlan-30 # exit
```

- 5. Assign ports to VLAN 30
- Enable dual mode trunking on ports 0/1/4 and 0/1/5
- Apply Access List 101
- Turn on inline power
- Enable DCSP
- Disable spanning tree on the interface

Closet_B (config)# int eth 0/1/4

Closet B (config-if-0/1/4)# dual-mode 30

Closet B (config-if-0/1/4)# ip access-group 101 in

Closet B (config-if-0/1/4)# inline power

Closet B (config-if-0/1/4)# trust dscp

Closet B (config-if-0/1/4)# no spanning-tree

Closet B (config-if-0/1/4)# exit

Closet B (config)# int eth 0/1/5

Closet B (config-if-0/1/5)# dual-mode 30

Closet B (config-if-0/1/5)# ip access-group 101 in

Closet B (config-if-0/1/5)# inline power

Closet B (config-if-0/1/5)# trust dscp

Closet B (config-if-0/1/5)# no spanning-tree

Closet B (config-if-0/1/5)# exit

6. Write the running configuration to the startup configuration

Closet B (config)# write memory

8. Configure the Brocade Networks FastIron GS Switch in Closet-A

This section addresses how to configure the Brocade FastIron GS Switch. The Brocade FastIron GS Switch will enforce QoS policies and spanning tree.

To configure the FastIron GS Switch, connect a PC or laptop to the serial port of the FastIron GS Switch. Run a terminal emulation program with the following configuration:

■ Bits per second: 9600

Data bits: 8Parity: NoneStop bits: 1

FastIron GS Switch#

• Flow Control: None

1. Log into Brocade FastIron GS Switch.

Connect to the Brocade FastIron GS Switch.	Log in using the appropriate credentials.
Login:	
Password:	

- 2. Enable the following features on the FastIron GS Switch.
 - Configure Hostname
 - Enable QoS
 - Set OoS Differentiated Services information
 - Create QoS access list 101
 - Add ports to access list
 - Enable Rapid Spanning Tree admin-pt2pt-mac for uplink to other switches
 - Write the running configuration to the startup configuration

FastIron GS Switch # config t

FastIron GS Switch(config) # hostname Closet_A

Closet A(config)# qos mechanism strict

Closet A(config)# qos-tos map dscp-priority 46 48 to 7

Closet_A(config)# qos-tos map dscp-priority 0 to 1

Closet_A(config)# access-list 101 permit ip any any dscp-matching 46 802.1p-priority-marking 7

Closet_A(config)# access-list 101 permit ip any any dscp-matching 48 802.1p-priority-marking 7

Closet A(config)# access-list 101 permit ip any any dscp-matching 0

Closet A(config)# access-list 101 permit ip any any

Closet A(config)# int eth 0/1/1

Closet A(config)# ip access-group 101 in

Closet A(config)# spanning-tree 802-1w admin-pt2pt-mac

Closet A(config)# int eth 0/1/2

Closet A(config)# ip access-group 101 in

Closet_A(config)# spanning-tree 802-1w admin-pt2pt-mac

Closet A(config)# wr mem

- 3. Create and configure the voice VLAN for Closet-A.
 - Assign a VLAN ID for the voice VLAN
 - Assign ports to the voice VLAN
 - Enable Spanning tree on the VLAN

Closet A# config t

Closet_A(config)# vlan 33

Closet A(config-vlan-33)# tagged eth 0/1/1 to 0/1/2

Closet A(config-vlan-33)# spanning-tree 802-1w

Closet A(config-vlan-33)# exit

- 4. Create and configure the data VLAN for Closet-A
 - Assign a VLAN ID for the data VLAN
 - Assign ports to the data VLAN
 - Enable Spanning tree on the VLAN

Closet A# config t

Closet A(config)# vlan 30

Closet A(config-vlan-30)# tagged eth 0/1/1 to 0/1/2

Closet A(config-vlan-30)# spanning-tree 802-1w

Closet A(config-vlan-30)# exit

5. Write the running configuration to the startup configuration

Closet A(config)# write memory

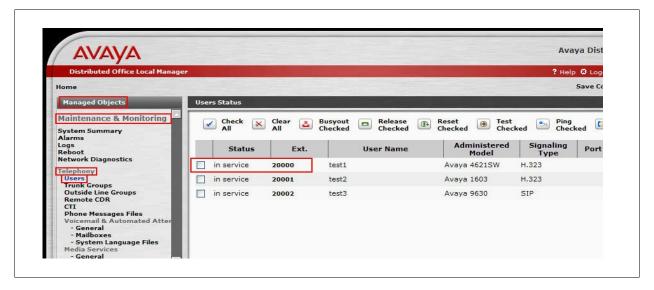
9. General Test Approach and Test Results

9.1. Test Approach

All feature functionality test cases were performed manually. The general test approach entailed verifying the following:

- LAN connectivity between the Avaya and Brocade products
- Registration of Avaya H.323 IP telephones with Avaya Communication Manager Branch Edition
- Registration of Avaya SIP IP telephones with Avaya Communication Manager Branch Edition
- Verification of the DHCP relay configuration
- VoIP calls over Layer 2 and Layer 3 connections
- Inter-office calls using G.711 mu-law codec
- Verifying that QoS directed the voice signaling and voice media to the higher priority egress queue based on the packets' DSCP value.
- Verifying voicemail and MWI work properly.
- Features Tested: attended/unattended transfer, conference call participation, conference call add/drop, multiple call appearances, caller ID operation, call forwarding unconditional, call forwarding on busy, call Park, call pick-up, bridged call appearances

The performance tests were performed by over subscribing the lines with low priority data and verifying that the prioritization of VoIP traffic and voice was achieved when calls are routed over all of the LAN interfaces.


9.2. Test Results

All feature functionality, serviceability, and performance test cases passed. The Brocade implementation did prioritization of VoIP traffic and yielded good voice quality with no calls being lost. The Avaya/Brocade solution was successfully verified through performance and serviceability testing.

10. Verification Steps

This section provides the steps for verifying end-to-end network connectivity and QoS in the field from the perspective of the Brocade FastIron SuperX Switch. In general, the verification steps include:

- Verify the DHCP relay is functioning by confirming that the all IP telephones from all locations receive their IP addresses from the DHCP server connected to the Brocade FastIron SuperX Switch.
- Place calls between Labs and Closets for each Avaya IP Telephone.
- Check that the Avaya IP telephones have successfully registered with Avaya Communication Manager Branch Edition. Log into Avaya Communication Manager Branch Edition using the appropriate credentials, select Managed Objects → Maintenance & Monitoring → Telephony → Users, look for in service.

11. Conclusion

These Application Notes describe the configuration steps for integrating Brocade Switches with an Avaya telephony infrastructure. For the configuration described in these Application Notes, the Brocade switches were responsible for enforcing QoS using Layer 3 Differentiated Services and Layer 2 (802.1p) as well as link aggregation, rapid spanning tree, load balancing and OSPF. Avaya Communication Manager Branch Edition delivered the voice traffic to the routers for transmission over the LAN together with data traffic. Prioritization of VoIP traffic and good voice quality was successfully achieved in the Avaya/Brocade configuration described herein.

12. Additional References

The documents referenced below were used for additional support and configuration information.

The following Avaya product documentation can be found at http://support.avaya.com.

- [1] Avaya Communication Manager Branch Edition i120 Installation Quick Start, May 2007 Issue 1, Document Number 03-602289.
- [2] Command Reference Release, Document Number: 882-10034 Rev 1.
- [3] Configuration Guide, Document Number: 882-20034 Rev 2.
- [4] Avaya one-X Deskphone Value Edition 1600 Series IP Telephones Installation and Maintenance Guide Release 1, Document # 16-601443.
- [5] Avaya one-X Deskphone SIP for 9600 Series IP Telephones Installation and Maintenance Guide Release 2.0, Document Number 16-601943.
- [6] 4600 Series IP Telephone LAN Administrator Guide, Document Number: 555-233-507.

The Brocade product documentation can be found at: http://www.Brocadenet.com/.

- [7] Brocade FastIron Configuration Guide with sections as follows:
 - FastIron X Series Chassis
 - FastIron SuperX
 - FastIron Layer 2 Compact Switches
 - o FastIron GS

13. Change History

Issue	Date	Reason
1.0	5/4/2009	Initial issue

©2009 Avaya Inc. All Rights Reserved.

Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and TM are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners. The information provided in these Application Notes is subject to change without notice. The configurations, technical data, and recommendations provided in these Application Notes are believed to be accurate and dependable, but are presented without express or implied warranty. Users are responsible for their application of any products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the full title name and filename, located in the lower right corner, directly to the Avaya DevConnect Program at devconnect@avaya.com.