Application Notes for Configuring Avaya Aura® Communication Manager R6.0.1 as an Evolution Server, Avaya Aura® Session Manager R6.1 and Avaya Session Border Controller Advanced for Enterprise to support Telenor SIP Trunk Service – Issue 1.0

Abstract

These Application Notes describe the steps used to configure Session Initiation Protocol (SIP) trunking between the Telenor SIP Trunk service and an Avaya SIP enabled Enterprise Solution. The Avaya solution consists of Avaya Session Border Controller Advanced for Enterprise, Avaya Aura® Session Manager and Avaya Aura® Communication Manager as an Evolution Server. Telenor is a member of the DevConnect Service Provider program.

Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab.

NOTE: This Application Note focused on the SIP Trunking aspect of the Avaya Session Border Controller Advanced for Enterprise. Advanced enterprise capabilities such as Remote Worker “a.k.a. Remote SIP Endpoints”, dual forking, and TLS/SRTP were not tested. As a result, the Avaya Session Border Controller for Enterprise is also considered Compliance Tested for this solution.
1. Introduction

These Application Notes describe the steps used to configure Session Initiation Protocol (SIP) trunking between Telenor SIP Trunk service and an Avaya SIP-enabled Enterprise Solution. The Avaya solution consists of Avaya Session Border Controller Advanced for Enterprise, Avaya Aura® Session Manager and Avaya Aura® Communication Manager Evolution Server. Customers using this Avaya SIP-enabled enterprise solution with Telenor SIP Trunk service are able to place and receive PSTN calls via a dedicated Internet connection and the SIP protocol. This converged network solution is an alternative to traditional PSTN trunks. This approach generally results in lower cost for the Enterprise customer.

2. General Test Approach and Test Results

The general test approach was to configure a simulated enterprise site using an Avaya SIP telephony solution consisting of Communication Manager, Session Manager and Session Border Controller. The enterprise site was configured to use the SIP Trunk service provided by Telenor.

2.1. Interoperability Compliance Testing

The interoperability test included the following:
- Incoming calls to the enterprise site from the PSTN routed to the DDI numbers assigned by Telenor
- Incoming PSTN calls made to SIP, H.323 and Digital telephones at the enterprise
- Outgoing calls from the enterprise site completed via Telenor to PSTN destinations
- Outgoing calls from the enterprise to the PSTN made from SIP, H.323 and Analogue telephones
- Calls using the G.711A codec
- Fax calls to/from a group 3 fax machine to a PSTN connected fax machine using T.38
- DTMF transmission using RFC 2833 with successful Voice Mail/Vector navigation for inbound and outbound calls
- User features such as hold and resume, transfer, conference, call forwarding, etc
- Caller ID Presentation and Caller ID Restriction
- Direct IP-to-IP media (also known as “shuffling”) with SIP and H.323 telephones
- Call coverage and call forwarding for endpoints at the enterprise site
- Transmission and response of SIP OPTIONS messages sent by Telenor requiring Avaya response and sent by Avaya requiring Telenor response
2.2. Test Results

Interoperability testing of the sample configuration was completed with successful results for the Telenor SIP Trunk service with the following observations:

- No inbound toll free numbers were tested as none were available from the Service Provider
- No Emergency Services numbers tested as test calls to these numbers should be pre-arranged with the Operator
- RTP Payload Type negotiation for DTMF on outgoing calls from a SIP phone failed, change of PT to 96 on the phone was required
- Telenor response to OPTIONS is SIP message 407 “Proxy Authentication Required” which has to be changed to 200 OK on the Avaya Session Border Controller Advanced for Enterprise using a signalling rule
- The private IP address of the Communication Manager is passed to Telenor in the contact header in the SIP INVITE message which is subsequently used in the Request URI of the BYE message from Telenor
- Telenor does not accept an SDP in the 181 “Call is being forwarded” message from the Enterprise
- Long post dial delay was experienced during test requiring a change to a timer for EC500

2.3. Support

For technical support on Telenor products please visit the website at www.telenor.com or contact an authorized Telenor representative.
3. Reference Configuration

Figure 1 illustrates the test configuration. The test configuration shows an Enterprise site connected to the Telenor SIP Trunk Service. Located at the Enterprise site is a Session Border Controller, Session Manager and Communication Manager. Endpoints are Avaya 96x0 series and Avaya 96x1 series IP telephones (with SIP and H.323 firmware), Avaya 46xx series IP telephones (with H.323 firmware), Avaya 16xx series IP telephones (with SIP firmware) Avaya analogue telephones and an analogue fax machine. Also included in the test configuration was an Avaya one-X® Communicator soft phone running on a laptop PC configured for H.323.
4. Equipment and Software Validated

The following equipment and software were used for the sample configuration provided:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaya S8800 Server</td>
<td>Avaya Aura® Communication Manager R6.0.1 (R016x.00.1.510.1) Service Pack 19303 (System Platform 6.0.3.3.3)</td>
</tr>
<tr>
<td>Avaya S8800 Server</td>
<td>Avaya Aura® Session Manager R6.1 (6.1.5.0.615006)</td>
</tr>
<tr>
<td>Avaya S8800 Server</td>
<td>Avaya Aura® System Manager R6.1 (System Platform 6.0.3.1.3, Template 6.1.5.0)</td>
</tr>
<tr>
<td>Avaya Session Border Controller</td>
<td>Avaya Session Border Controller Advanced for Enterprise 4.0.5.Q02</td>
</tr>
<tr>
<td>Advanced for Enterprise Server</td>
<td></td>
</tr>
<tr>
<td>Avaya 1616 Phone (H.323)</td>
<td>1.22</td>
</tr>
<tr>
<td>Avaya 4621 Phone (H.323)</td>
<td>2.901</td>
</tr>
<tr>
<td>Avaya 9670 Phone (H.323)</td>
<td>2.0</td>
</tr>
<tr>
<td>Avaya 9601 Phone (SIP)</td>
<td>R6.1 SP3</td>
</tr>
<tr>
<td>Avaya one–X® Communicator (H.323) on</td>
<td>Avaya one–X® Communicator 6.0.1.16-SP1-25226</td>
</tr>
<tr>
<td>Lenovo T510 Laptop PC</td>
<td></td>
</tr>
<tr>
<td>Analogue Phone</td>
<td>N/A</td>
</tr>
<tr>
<td>Telenor Equipment</td>
<td>Software</td>
</tr>
<tr>
<td>Telenor IPT</td>
<td>Version 2.1.2.119</td>
</tr>
<tr>
<td>Acme Packet Net-Net 4250 SBC</td>
<td>Firmware SC6.1.0 MR-10 Patch 4 (Build 1002) 14th Dec 2011</td>
</tr>
<tr>
<td>Lucent Session Manager</td>
<td>14.28.00.18</td>
</tr>
</tbody>
</table>
5. Configure Avaya Aura® Communication Manager

This section describes the steps for configuring Communication Manager for SIP Trunking. SIP trunks are established between Communication Manager and Session Manager. These SIP trunks will carry SIP Signalling associated with the Telenor SIP Trunk Service. For incoming calls, the Session Manager receives SIP messages from the Avaya Session Border Controller Advanced for Enterprise and directs the incoming SIP messages to Communication Manager. Once the message arrives at Communication Manager, further incoming call treatment, such as incoming digit translations and class of service restrictions may be performed. All outgoing calls to the PSTN are processed within Communication Manager and may be first subject to outbound features such as automatic route selection, digit manipulation and class of service restrictions. Once Communication Manager selects a SIP trunk, the SIP signalling is routed to the Session Manager. The Session Manager directs the outbound SIP messages to the Session Border Controller at the enterprise site that then sends the SIP messages to the Telenor network.

Communication Manager Configuration was performed using the System Access Terminal (SAT). Some screens in this section have been abridged and highlighted for brevity and clarity in presentation. The general installation of the Avaya S8800 Servers and Avaya G430 Media Gateway is presumed to have been previously completed and is not discussed here.

5.1. Confirm System Features

The license file installed on the system controls the maximum values for these attributes. If a required feature is not enabled or there is insufficient capacity, contact an authorized Avaya sales representative to add additional capacity. Use the `display system-parameters customer-options` command and on Page 2, verify that the Maximum Administered SIP Trunks supported by the system is sufficient for the combination of trunks to the Telenor network, and any other SIP trunks used.

<table>
<thead>
<tr>
<th>IP PORT CAPACITIES</th>
<th>USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Administered H.323 Trunks: 12000</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered IP Stations: 18000</td>
<td>3</td>
</tr>
<tr>
<td>Maximum Administered Remote Office Trunks: 12000</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered Remote Office Stations: 18000</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered IP eCons: 414</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Concur Registered Unauthenticated H.323 Stations: 100</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Video Capable Stations: 18000</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Video Capable IP Softphones: 18000</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Administered SIP Trunks: 24000</td>
<td>20</td>
</tr>
<tr>
<td>Maximum Administered Ad-hoc Video Conferencing Ports: 24000</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Number of DS1 Boards with Echo Cancellation: 522</td>
<td>0</td>
</tr>
<tr>
<td>Maximum TN2501 VAL Boards: 128</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Media Gateway VAL Sources: 250</td>
<td>1</td>
</tr>
<tr>
<td>Maximum TN2602 Boards with 80 VoIP Channels: 128</td>
<td>0</td>
</tr>
<tr>
<td>Maximum TN2602 Boards with 320 VoIP Channels: 128</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Number of Expanded Meet-me Conference Ports: 300</td>
<td>0</td>
</tr>
</tbody>
</table>
5.2. Administer IP Node Names

The node names defined here will be used in other configuration screens to define a SIP signalling group between Communication Manager and Session Manager. In the IP Node Names form, assign the node Name and IP Address for the Session Manager. In this case, SM100 and 10.10.9.61 are the Name and IP Address for the Session Manager SIP interface. Also note the procr name as this is the processor interface that Communication Manager will use as the SIP signalling interface to Session Manager.

<table>
<thead>
<tr>
<th>Name</th>
<th>IP Address</th>
<th>IP NODE NAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM100</td>
<td>10.10.9.61</td>
<td></td>
</tr>
<tr>
<td>default</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>procr</td>
<td>10.10.9.52</td>
<td></td>
</tr>
<tr>
<td>procr6</td>
<td>::</td>
<td></td>
</tr>
</tbody>
</table>
5.3. Administer IP Network Region

Use the **change ip-network-region 1** command to set the following values:

- **The Authoritative Domain** field is configured to match the domain name configured on Session Manager. In this configuration, the domain name is **avaya.com**.
- By default, **IP-IP Direct Audio (both Intra- and Inter-Region)** is enabled (**yes**) to allow audio traffic to be sent directly between endpoints without using gateway VoIP resources. When a PSTN call is shuffled, the media stream is established directly between the enterprise end-point and the internal media interface of the Session Border Controller Advanced for Enterprise.
- **The Codec Set** is set to the number of the IP codec set to be used for calls within the IP network region. In this case, codec set 1 is used.

<table>
<thead>
<tr>
<th>change ip-network-region 1</th>
<th>Page 1 of 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region: 1</td>
<td>IP NETWORK REGION</td>
</tr>
<tr>
<td>Location: 1</td>
<td>Authoritative Domain: avaya.com</td>
</tr>
<tr>
<td>Name: default</td>
<td></td>
</tr>
<tr>
<td>MEDIA PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>Intra-region IP-IP Direct Audio: yes</td>
<td></td>
</tr>
<tr>
<td>Codec Set: 1</td>
<td>Inter-region IP-IP Direct Audio: yes</td>
</tr>
<tr>
<td>UDP Port Min: 2048</td>
<td>IP Audio Hairpinning? n</td>
</tr>
<tr>
<td>UDP Port Max: 3329</td>
<td></td>
</tr>
<tr>
<td>DIFFSERV/TOS PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>Call Control PHB Value: 46</td>
<td></td>
</tr>
<tr>
<td>Audio PHB Value: 46</td>
<td></td>
</tr>
<tr>
<td>Video PHB Value: 26</td>
<td></td>
</tr>
<tr>
<td>802.1P/Q PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>Call Control 802.1p Priority: 6</td>
<td></td>
</tr>
<tr>
<td>Audio 802.1p Priority: 6</td>
<td></td>
</tr>
<tr>
<td>Video 802.1p Priority: 5</td>
<td></td>
</tr>
<tr>
<td>AUDIO RESOURCE RESERVATION PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>RSVP Enabled? n</td>
<td></td>
</tr>
<tr>
<td>H.323 IP ENDPOINTS</td>
<td></td>
</tr>
<tr>
<td>H.323 Link Bounce Recovery? y</td>
<td></td>
</tr>
<tr>
<td>Idle Traffic Interval (sec): 20</td>
<td></td>
</tr>
<tr>
<td>Keep-Alive Interval (sec): 5</td>
<td></td>
</tr>
<tr>
<td>Keep-Alive Count: 5</td>
<td></td>
</tr>
</tbody>
</table>
5.4. Administer IP Codec Set

Open the IP Codec Set form for the codec set specified in the IP Network Region form, Section 5.3. Enter the list of audio codec’s eligible to be used in order of preference. For the interoperability test the codec supported by Telenor was configured, namely G.711A and G.711MU.

<table>
<thead>
<tr>
<th>Codec</th>
<th>Audio</th>
<th>Silence Suppression</th>
<th>Frames</th>
<th>Packet Size (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: G.711A</td>
<td>n</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2: G.711MU</td>
<td>n</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

The Telenor SIP Trunk service supports T.38 for transmission of fax. Navigate to Page 2 to configure T.38 by setting the Fax Mode to t.38-standard as shown below.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX</td>
<td>t.38-standard</td>
</tr>
<tr>
<td>Modem</td>
<td>off</td>
</tr>
<tr>
<td>TDD/TTY</td>
<td>US</td>
</tr>
<tr>
<td>Clear-channel</td>
<td>n</td>
</tr>
</tbody>
</table>
5.5. Administer SIP Signaling Groups

This signaling group (and trunk group) will be used for inbound and outbound PSTN calls to the Telenor SIP Trunk service. During test, this was configured to use TCP and port 5075 to facilitate tracing and fault analysis. It is recommended however, to use TLS (Transport Layer Security) and the default TLS port of 5061 for security. Configure the Signaling Group using the `add signaling-group x` command as follows:

- Set **Group Type** to `sip`
- Set **Transport Method** to `tcp`
- Set **Peer Detection Enabled** to `y` allowing the Communication Manager to automatically detect if the peer server is a Session Manager
- Set **Near-end Node Name** to the processor interface (node name `procr` as defined in the IP Node Names form shown in Section 5.2)
- Set **Far-end Node Name** to the Session Manager (node name `SM100` as defined in the IP Node Names form shown in Section 5.2)
- Set **Near-end Listen Port** and **Far-end Listen Port** to 5075 (Telenor preferred TCP port value)
- Set **Far-end Network Region** to the IP Network Region configured in Section 5.3. (logically establishes the far-end for calls using this signaling group as network region 1)
- Leave **Far-end Domain** blank (removes the analysis of the far end domain name and subsequent handling of multiple signaling groups where it is not required)
- Set **Direct IP-IP Audio Connections** to `y`
- Leave **DTMF over IP** at default value of `rtp-payload` (Enables RFC2833 for DTMF transmission from the Communication Manager)

The default values for the other fields may be used.
Note that the commonly used TCP port 5060 could be used between the Communication Manager and the Session Manager. Port 5075 has been used for consistency however, as this is the port preferred by the Telenor network.

5.6. Administer SIP Trunk Group

A trunk group is associated with the signaling group described in Section 5.5. Configure the trunk group using the \texttt{add trunk-group} \textit{x} command, where \textit{x} is an available trunk group. On Page 1 of this form:

- Set the \textbf{Group Type} field to \textit{sip}
- Choose a descriptive \textbf{Group Name}
- Specify a trunk access code (TAC) consistent with the dial plan
- The \textbf{Direction} is set to \textit{two-way} to allow incoming and outgoing calls
- Set the \textbf{Service Type} field to \textit{tie}
- Specify the signaling group associated with this trunk group in the \textbf{Signaling Group} field as previously configured in Section 5.5
- Specify the \textbf{Number of Members} supported by this SIP trunk group

\begin{verbatim}
add trunk-group 1

TRUNK GROUP

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Number</td>
<td>1</td>
</tr>
<tr>
<td>Group Name</td>
<td>Group 1</td>
</tr>
<tr>
<td>Direction</td>
<td>two-way</td>
</tr>
<tr>
<td>Dial Access?</td>
<td>n</td>
</tr>
<tr>
<td>Queue Length</td>
<td>0</td>
</tr>
<tr>
<td>Service Type</td>
<td>tie</td>
</tr>
</tbody>
</table>

CDR Reports: y

COR: 1 TN: 1 TAC: 101

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Type</td>
<td>sip</td>
</tr>
<tr>
<td>CDR Reports</td>
<td>y</td>
</tr>
<tr>
<td>COR</td>
<td>1</td>
</tr>
<tr>
<td>TN</td>
<td>1</td>
</tr>
<tr>
<td>TAC</td>
<td>101</td>
</tr>
</tbody>
</table>

Preferred Minimum Session Refresh Interval (sec): 600

Outgoing Display? y

Night Service:

Auth Code? n

Member Assignment Method: auto

Signaling Group: 1

Number of Members: 10

On Page 2 of the trunk-group form, the \textbf{Preferred Minimum Session Refresh Interval (sec)} field should be set to a value mutually agreed with Telenor to prevent unnecessary SIP messages during call setup. Also note that the value for \textbf{Redirect On OPTIM Failure} was increased during test to allow additional set-up time for calls destined for an EC500 destination. This was necessary to overcome long post dial delay.

\begin{verbatim}
add trunk-group 1

TRUNK PARAMETERS

Unicode Name: auto

Redirect On OPTIM Failure: 10000

SCCAN? n

Digital Loss Group: 18

Preferred Minimum Session Refresh Interval (sec): 600

BG; Reviewed: Solution & Interoperability Test Lab Application Notes 11 of 48
SPOC 4/2/2012 ©2012 Avaya Inc. All Rights Reserved. TNOR_CM601SBC
On Page 3, set the **Numbering Format** field to **public**.

```
add trunk-group 1
TRUNK FEATURES
  ACA Assignment? n             Measured: none
  Maintenance Tests? y
Numbering Format: public
  UUI Treatment: service-provider
  Replace Restricted Numbers? n
  Replace Unavailable Numbers? n
```

On Page 4 of this form:
- Set the **Network Call Redirection** to **y** for the Network Call Redirection test
- Set the **Telephone Event Payload Type** to **96** to match the value preferred by Telenor
- Set **Always Use re-INVITE for Display Updates** to **y** to allow correct operation of fax when the Telenor network is the first to detect fax and initiate the re-INVITE.

```
add trunk-group 1
PROTOCOL VARIATIONS
  Mark Users as Phone? n
  Prepend '+' to Calling Number? n
  Send Transferring Party Information? n
  Network Call Redirection? y
  Send Diversion Header? n
  Support Request History? y
  Telephone Event Payload Type: 96

  Convert 180 to 183 for Early Media? n
  Always Use re-INVITE for Display Updates? y
  Identity for Calling Party Display: P-Asserted-Identity
  Enable Q-SIP? n
```
5.7. Administer Calling Party Number Information

Use the `change public-unknown-numbering` command to configure Communication Manager to send the calling party number. In the test configuration, individual stations were mapped to send numbers allocated from the Telenor DDI range supplied. This calling party number is sent in the SIP From, Contact and PAI headers, and displayed on display-equipped PSTN telephones. Note that the last six digits of the DDI range are not shown.

```
<table>
<thead>
<tr>
<th>Ext</th>
<th>Ext</th>
<th>Trk</th>
<th>CPN</th>
<th>CPN</th>
<th>Total Administered: 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>1</td>
<td>4722</td>
<td>xxxxx</td>
<td>10 Maximum Entries: 9999</td>
</tr>
<tr>
<td>4</td>
<td>2291</td>
<td>1</td>
<td>4722</td>
<td>xxxxx</td>
<td>10 Note: If an entry applies to</td>
</tr>
<tr>
<td>4</td>
<td>2296</td>
<td>1</td>
<td>4722</td>
<td>xxxxx</td>
<td>10 a SIP connection to Avaya</td>
</tr>
<tr>
<td>4</td>
<td>2316</td>
<td>1</td>
<td>4722</td>
<td>xxxxx</td>
<td>10 Aura(tm) Session Manager,</td>
</tr>
<tr>
<td>4</td>
<td>2346</td>
<td>1</td>
<td>4722</td>
<td>xxxxx</td>
<td>10 the resulting number must</td>
</tr>
<tr>
<td>4</td>
<td>2396</td>
<td>1</td>
<td>4722</td>
<td>xxxxx</td>
<td>10 be a complete E.164 number.</td>
</tr>
</tbody>
</table>
```

5.8. Administer Route Selection for Outbound Calls

In the test environment, the Automatic Route Selection (ARS) feature was used to route outbound calls via the SIP trunk to Telenor SIP Trunk Service. The single digit 9 was used as the ARS access code providing a facility for telephone users to dial 9 to reach an outside line. Use the `change feature-access-codes` command to configure a digit as the Auto Route Selection (ARS) - Access Code 1.

```
<table>
<thead>
<tr>
<th>FEATURE ACCESS CODE (FAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviated Dialing List1 Access Code:</td>
</tr>
<tr>
<td>Abbreviated Dialing List2 Access Code:</td>
</tr>
<tr>
<td>Abbreviated Dialing List3 Access Code:</td>
</tr>
<tr>
<td>Abbreviated Dial - Prgm Group List Access Code:</td>
</tr>
<tr>
<td>Announcement Access Code: *69</td>
</tr>
<tr>
<td>Answer Back Access Code:</td>
</tr>
<tr>
<td>Attendant Access Code:</td>
</tr>
<tr>
<td>Auto Alternate Routing (AAR) Access Code: 7</td>
</tr>
<tr>
<td>Auto Route Selection (ARS) - Access Code 1: 9 Access Code 2:</td>
</tr>
</tbody>
</table>
```
Use the **change ars analysis** command to configure the routing of dialled digits following the first digit 9. A small sample of dial patterns are shown here as an example. Further administration of ARS is beyond the scope of this document. The example entries shown will match outgoing calls to numbers beginning **0 or 00**. Note that exact maximum number lengths have been used as it was found during test that a greater value resulted in transmission of a DTMF “#” after establishment of the media stream. Calls are sent to route pattern **1**.

<table>
<thead>
<tr>
<th>Dialed String</th>
<th>Total Min</th>
<th>Total Max</th>
<th>Route Pattern</th>
<th>Type</th>
<th>Call Node</th>
<th>ANI Reqd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>14</td>
<td>1</td>
<td>pubu</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>pubu</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>pubu</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

Use the **change route-pattern x** command to add the SIP trunk group to the route pattern that ARS selects. In this configuration, route pattern **1** is used to route calls to trunk group **1**.

<table>
<thead>
<tr>
<th>Pattern Number: 1</th>
<th>Pattern Name: all calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp FRL NPA Pfx Hop Toll No.</td>
<td>Inserted</td>
</tr>
<tr>
<td>No Mrk Lmt List Del Digits</td>
<td>Dgts</td>
</tr>
<tr>
<td>1:</td>
<td>n</td>
</tr>
<tr>
<td>2:</td>
<td>n</td>
</tr>
<tr>
<td>3:</td>
<td>n</td>
</tr>
<tr>
<td>4:</td>
<td>n</td>
</tr>
<tr>
<td>5:</td>
<td>n</td>
</tr>
<tr>
<td>6:</td>
<td>n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BCC VALUE</th>
<th>TSC</th>
<th>CA-TSC</th>
<th>ITC</th>
<th>BCIE Service/Feature PARM</th>
<th>No. Numbering LAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 M 4 W</td>
<td>Request</td>
<td>Dgts Format</td>
<td>Subaddress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:</td>
<td>y y y y y n n</td>
<td>rest</td>
<td>unk-unk</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>y y y y y n n</td>
<td>rest</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>
5.9. Administer Incoming Digit Translation

This step configures the settings necessary to map incoming DDI calls to the proper Communication Manager extension(s). The incoming digits sent in the INVITE message from Telenor can be manipulated as necessary to route calls to the desired extension. In the examples used in the compliance testing, the incoming DDI numbers provided by Telenor correlate to the internal extensions assigned within Communication Manager. The entries displayed below translate three incoming DDI numbers in the range +4722xxxxxx to a 4 digit extension by deleting all of the incoming digits and inserting an extension. Note that the last six digits of the DDI range are not shown.

```
change inc-call-handling-trmt trunk-group 1

INCOMING CALL HANDLING TREATMENT
Feature  Len  Digits    Del  Insert
      tie   11  +4722xxxxxx  all  2396
      tie   11  +4722xxxxxx  all  6103
      tie   11  +4722xxxxxx  all  2296
```

5.10. EC500 Configuration

When EC500 is enabled on the Communication Manager station, a call to that station will generate a new outbound call from Communication Manager to the configured EC500 destination, typically a mobile phone. The following screen shows an example EC500 configuration for the user with station extension 2396. Use the command `change off-pbx-telephone station mapping x` where x is the Communication Manager station.

- The **Station Extension** field will automatically populate with station extension
- For **Application** enter **EC500**
- Enter a **Dial Prefix** (e.g., 9) if required by the routing configuration
- For the **Phone Number** enter the phone that will also be called (e.g. **0035386xxxxxx**)
- Set the **Trunk Selection** to 1 so that Trunk Group 1 will be used for routing
- Set the **Config Set** to 1

Other parameters can retain default value

```
change off-pbx-telephone station-mapping 2396

STATIONS WITH OFF-PBX TELEPHONE INTEGRATION
Station Extension  Application Dial Prefix  CC  Phone Number  Trunk Selection  Config Set  Dual Mode
2396             EC500   -       0035386xxxxxx  1         1
```

Save Communication Manager changes by entering **save translation** to make them permanent.
6. Configuring Avaya Aura® Session Manager

This section provides the procedures for configuring Session Manager. The Session Manager is configured via the System Manager. The procedures include the following areas:

- Log in to Avaya Aura® System Manager
- Administer SIP domain
- Administer Locations
- Administer Adapations
- Administer SIP Entities
- Administer Entity Links
- Administer Routing Policies
- Administer Dial Patterns
- Administer Application for Avaya Aura® Communication Manager
- Administer Application Sequence for Avaya Aura® Communication Manager
- Administer SIP Extensions

6.1. Log in to Avaya Aura® System Manager

Access the System Manager using a Web Browser by entering http://<FQDN >/SMGR, where <FQDN> is the fully qualified domain name of System Manager. Log in using appropriate credentials (not shown) and the Home tab will be presented with menu options shown below.
6.2. Administer SIP Domain

To add the SIP domain that will be used with Session Manager, select Routing from the Home tab menu and in the resulting tab select Domains from left hand menu. Click the New button to create a new SIP domain entry. In the Name field enter the domain name (e.g., avaya.com) and optionally a description for the domain in the Notes field. Click Commit to save changes.
6.3. Administer Locations

Locations can be used to identify logical and/or physical locations where SIP Entities reside, for the purposes of bandwidth management. One location is added to the sample configuration for all of the enterprise SIP entities. On the **Routing** tab select **Locations** from the left hand menu. Under **General**, in the **Name** field enter an informative name for the location. Scroll to the bottom of the page and under **Location Pattern**, click **Add**, then enter an **IP Address Pattern** in the resulting new row, * is used to specify any number of allowed characters at the end of the string. Below is the location configuration used for the test enterprise.
6.4. Administer Adaptations

Adaptations can be used to modify the called party number to meet network requirements. The example shown was used in test to convert the called number to E.164 format. The module **DigitConversionAdaptor** is used to convert numbers in the following way:

- International Numbers – remove the international dialing prefix (00) and replace with a “+”
- National Numbers – remove the leading zero and replace with a “+” followed by the country code

These rules are applied to the destination addresses.
6.5. Administer SIP Entities

A SIP Entity must be added for each SIP-based telephony system, supported by a SIP connection to the Session Manager. To add a SIP Entity, select SIP Entities on the left panel menu and then click on the New button (not shown). The following will need to be entered for each SIP Entity. Under General:

- In the Name field enter an informative name
- In the FQDN or IP Address field enter the IP address of Session Manager or the signalling interface on the connecting system
- In the Type field use Session Manager for a Session Manager SIP entity, CM for a Communication Manager SIP entity and Gateway for the Session Border Controller SIP entity
- In the Location field select the appropriate location from the drop down menu
- In the Time Zone field enter the time zone for the SIP Entity

In this configuration there are three SIP Entities:
- Avaya Aura® Session Manager SIP Entity
- Avaya Aura® Communication Manager SIP Entity
- Avaya Session Border Controller Advanced for Enterprise SIP Entity

6.5.1. Avaya Aura® Session Manager SIP Entity

The following screens show the SIP entity for Session Manager. The FQDN or IP Address field is set to the IP address of the Session Manager SIP signalling interface.
The Session Manager must be configured with the port numbers on the protocols that will be used by the other SIP entities. To configure these scroll to the bottom of the page and under **Port**, click **Add**, then edit the fields in the resulting new row.

- In the **Port** field enter the port number on which the system listens for SIP requests
- In the **Protocol** field enter the transport protocol to be used for SIP requests
- In the **Default Domain** field, from the drop down menu select **avaya.com** as the default domain

6.5.2. Avaya Aura® Communication Manager SIP Entity

The following screen shows the SIP entity for Communication Manager which is configured as an Evolution Server. The **FQDN or IP Address** field is set to the IP address of the interface on Communication Manager that will be providing SIP signalling.
6.5.3. Avaya Session Border Controller Advanced for Enterprise SIP Entity

The following screen shows the SIP Entity for the Session Border Controller. The **FQDN or IP Address** field is set to the IP address of the Session Border Controller private network interface (see Figure 1).
6.6. Administer Entity Links

A SIP trunk between a Session Manager and another system is described by an Entity Link. To add an Entity Link, select **Entity Links** on the left panel menu and click on the **New** button (not shown). Fill in the following fields in the new row that is displayed:

- In the **Name** field enter an informative name
- In the **SIP Entity 1** field select **Session Manager 1**
- In the **Port** field enter the port number to which the other system sends its SIP requests
- In the **SIP Entity 2** field enter the other SIP Entity for this link, created in **Section 6.5**
- In the **Port** field enter the port number to which the other system expects to receive SIP requests
- Select the **Trusted** tick box to make the other system trusted
- In the **Protocol** field enter the transport protocol to be used to send SIP requests

Click **Commit** to save changes. The following screen shows the Entity Links used in this configuration.
6.7. Administer Routing Policies

Routing policies must be created to direct how calls will be routed to a system. To add a routing policy, select Routing Policies on the left panel menu and then click on the New button (not shown).

Under General:
- Enter an informative name in the Name field
- Under SIP Entity as Destination, click Select, and then select the appropriate SIP entity to which this routing policy applies
- Under Time of Day, click Add, and then select the time range

The following screen shows the routing policy for Communication Manager
The following screen shows the routing policy for the Session Border Controller.
6.8. Administer Dial Patterns

A dial pattern must be defined to direct calls to the appropriate telephony system. To configure a dial pattern select **Dial Patterns** on the left panel menu and then click on the **New** button (not shown).

Under General:
- In the **Pattern** field enter a dialled number or prefix to be matched
- In the **Min** field enter the minimum length of the dialled number
- In the **Max** field enter the maximum length of the dialled number
- In the **SIP Domain** field select **ALL** or alternatively one of those configured in **Section 6.2**

Under Originating Locations and Routing Policies. Click **Add**, in the resulting screen (not shown), under **Originating Location** select **ALL** and under **Routing Policies** select one of the routing policies defined in **Section 6.7** Click **Select** button to save. The following screen shows an example dial pattern configured for the Session Border Controller which will route the calls out to the Telenor SIP Trunk service.
The following screen shows the test dial pattern configured for Communication Manager. Note that the last four digits are not shown.
6.9. Administer Application for Avaya Aura® Communication Manager

From the home tab select Session Manager from the menu. In the resulting tab from the left panel menu select Application Configuration → Applications and click New.

- In the Name field enter a name for the application
- In the SIP Entity field select the SIP entity for the Communication Manager
- In the CM System for SIP Entity field select the SIP entity for the Communication Manager

Select Commit to save the configuration.
6.10. Administer Application Sequence for Avaya Aura® Communication Manager

From the left panel navigate to Session Manager → Application Configuration → Application Sequences and click on New.

- In the Name field enter a descriptive name
- Under Available Applications, click the + sign in front of the appropriate application instance. When the screen refreshes the application should be displayed under the Applications in this Sequence heading

Select Commit.
6.11. Administer SIP Extensions

SIP extensions are registered with the Session Manager and use Communication Manager for their feature and configuration settings. From the Home tab select User Management from the menu. Then select Manage Users and click New (not shown).

On the Identity tab:

- Enter the user's name in the Last Name and First Name fields
- In the Login Name field enter a unique system login name in the form of user@domain (e.g. 2296@avaya.com) which is used to create the user's primary handle
- The Authentication Type should be Basic
- In the Password/Confirm Password fields enter an alphanumeric password
On the Communication Profile tab enter a numeric Communication Profile Password and confirm it, then expand the Communication Address section and click New. For the Type field select sip from the drop-down menu. In the Fully Qualified Address field, enter an extension number and select the relevant domain from the drop-down menu. Click the Add button.

Expand the Session Manager Profile section.
- Make sure the Session Manager check box is checked
- Select the appropriate Session Manager instance from the drop-down menu in the Primary Session Manager field
- Select the appropriate application sequence from the drop-down menu in the Origination Application Sequence field configured in Section 6.10
- Select the appropriate application sequence from the drop-down menu in the Termination Application Sequence field configured in Section 6.10
- Select the appropriate location from the drop-down menu in the Home Location field
Expand the **Endpoint Profile** section.
- Select the Communication Manager SIP Entity from the **System** drop-down menu
- Select **Endpoint** from the drop-down menu for **Profile Type**
- Enter the extension in the **Extension** field
- Select the desired template from the **Template** drop-down menu
- For the **Port** field select **IP**
- Select the **Delete Endpoint on Unassign of Endpoint from User or on Delete User** check box
- Select **Commit** to save changes and the System Manager will add the Communication Manager user configuration automatically
7. Configure Avaya Session Border Controller Advanced for Enterprise

This section describes the configuration of the Session Border Controller. At the time of writing the Avaya Session Border Controller Advanced for Enterprise was badged as the Sipera E-SBC (Enterprise Session Border Controller) developed for Unified Communications Security (UC-Sec). The Avaya Session Border Controller Advanced for Enterprise is administered using the E-SBC Control Center.

7.1. Access Avaya Session Border Controller Advanced for Enterprise

Access the Session Border Controller using a web browser by entering the URL https://<ip-address>, where <ip-address> is the private IP address configured at installation. Select the UC-Sec Control Center

Log in with the appropriate credentials.
7.2. Define Network Information

Network information is required on the Avaya Session Border Controller Advanced for Enterprise to allocate IP addresses and masks to the interfaces. Note that only the A1 and B1 interfaces are used, typically the A1 interface is used for the internal side and B1 is used for external side of the Avaya Session Border Controller Advanced for Enterprise. Each side can’t have more than one interface assigned. To define the network information, navigate to **Device Specific Settings ➔ Network Management** in the UC-Sec Control Center menu on the left hand side and click on **Add IP**. Enter details in the blank box that appears at the end of the list:

- Define the internal IP address with screening mask and assign to interface A1
- Select Save (not shown) to save the information
- Click on **Add IP**
- Define the external IP address (obscured in the screenshot below) with screening mask and assign to interface B1
- Select Save (not shown) to save the information
- Select the **Network Configuration** tab and change the state of interfaces A1 and B1 to **Enabled**
- Click on **System Management** in the main menu
- Select **Restart Application** indicated by an icon in the status bar
7.3. Define Interfaces
When the IP addresses and masks are assigned to the interfaces, these are then configured as signalling and media interfaces.

7.3.1. Signalling Interfaces
To define the signalling interfaces on the Avaya Session Border Controller Advanced for Enterprise, navigate to Device Specific Settings  Signalling Interface in the UC-Sec Control Center menu on the left hand side. Details of transport protocol and ports for the internal and external SIP signalling are entered here

- Select Add Signalling Interface and enter details in the pop-up menu
- In the Name field enter a descriptive name for the internal signalling interface
- Select an internal interface IP address defined in Section 7.2
- Select UDP and TCP port numbers, 5075 was used to be consistent with the external interface
- Select Add Signalling Interface and enter details in the pop-up menu
- In the Name field enter a descriptive name for the external signalling interface
- Select an external interface IP address (not shown) defined in Section 7.2
- Select UDP and TCP port numbers, 5075 is used by Telenor
7.3.2. Media Interfaces

To define the media interfaces on the Avaya Session Border Controller Advanced for Enterprise, navigate to **Device Specific Settings ➔ Signalling Interface** in the UC-Sec Control Center menu on the left hand side. Details of the RTP and SRTP port ranges for the internal and external media streams are entered here. The IP addresses for media can be the same as those used for signalling.

- Select **Add Media Interface** and enter details in the pop-up menu
- In the **Name** field enter a descriptive name for the internal media interface
- Select an **internal** interface IP address defined in **Section 7.2**
- Select RTP port ranges for the media path with the enterprise end-points
- Select **Add Media Interface** and enter details in the pop-up menu
- In the **Name** field enter a descriptive name for the external media interface
- Select an **external** interface IP address (not shown) defined in **Section 7.2**
- Select RTP port ranges for the media path with the Telenor SBC
7.4. Define Server Interworking

Server interworking is defined for each server connected to the Avaya Session Border Controller Advanced for Enterprise. In this case, the Telenor SBC is connected as the Trunk Server and the Session Manager is connected as the Call Server. To define server interworking on the Avaya Session Border Controller Advanced for Enterprise, navigate to Global Profiles → Server interworking in the UC-Sec Control Center menu on the left hand side. Highlight the avaya-ru profile which is a factory setting appropriate for Avaya equipment and select Clone Profile. A pop-up menu is generated headed “Clone Profile”

- In the Clone Name field enter a descriptive name for the Session Manager and click Finish
- Select Edit and enter details in the pop-up menu.
- Check the T.38 box
- Change the Hold Support RFC to RFC2543 then click Next and Finish
- Highlight the completed profile and Select Clone Profile
- In the Clone Name field enter a descriptive name for server interworking profile for the Telenor SBC and click Finish
- Select Edit and enter details in the pop-up menu
- Check the T.38 box
- In 181 Handling, select No SDP (required for call forwarding as described in Section 2.2)
- Select Next three times and Finish
7.5. Define Servers

Servers are defined for each server connected to the Avaya Session Border Controller Advanced for Enterprise. In this case, the Telenor SBC is connected as the Trunk Server and the Session Manager is connected as the Call Server. To define the Session Manager, navigate to Global Profiles ➔ Server Configuration in the UC-Sec Control Center menu on the left hand side. Click on Add Profile and enter details in the pop-up menu:

- In the Profile Name field enter a descriptive name for the Session Manager and click Next
- In the Server Type drop down menu, select Call Server
- In the IP Addresses / Supported FQDNs box, type the Session Manager SIP interface address which is the same as defined on the Communication Manager in Section 5.2
- Check TCP and UDP in Supported Transports
- Define the TCP and UDP ports for SIP signaling, 5075 is used for consistency with the Telenor Trunk Server
- Click Next three times then select the Interworking Profile for the Session Manager defined in Section 7.4 from the drop down menu
- Click Finish

The General tab on the resultant screen shows the IP addresses, TCP Port and UDP Port entered.
The Advanced tab on the resultant screen shows the Interworking Profile for the call server defined in section 7.4

To define the Telenor SBC, navigate to Global Profiles → Server Configuration in the UC-Sec Control Center menu on the left hand side. Click on Add Profile and enter details in the pop-up menu

- In the Profile Name field enter a descriptive name for the Telenor SBC and click Next
- In the Server Type drop down menu, select Trunk Server
- In the IP Addresses / Supported FQDNs box, type the IP address provided by the Service provider, typically the external IP address of their SBC
- Check TCP and UDP in Supported Transports
- Define the TCP and UDP ports for SIP signaling, 5075 is used for Telenor
- Click Next three times then select the Interworking Profile for the Telenor SBC defined in Section 7.4 from the drop down menu
- Click Finish

The General tab on the resultant screen shows the IP addresses, TCP Port and UDP Port entered.
The Advanced tab on the resultant screen shows the Interworking Profile for the call server defined in Section 7.4.

7.6. Define Routing

Routing information is required for routing to the Session Manager on the internal side and the Telenor SBC on the external side. The IP addresses and ports defined here will be used as the destination addresses for signalling. If no port is specified, default 5060 is used. To define routing to the Session Manager, navigate to Global Profiles → Routing in the UC-Sec Control Center menu on the left hand side. Click on Add Profile and enter details in the Routing Profile pop-up menu.

- In the Profile Name field enter a descriptive name for the Session Manager and click Next
- Enter the Session Manager SM100 IP address and port in the Next Hop Server 1 field
- Check the Next Hop in Dialog box
- Select TCP for the Outgoing Transport and click Finish

Note that unless default port 5060 is used, this must be included in the next hop IP address. Note also that Next Hop in Dialog is required to ensure that messages are sent to the next hop address regardless of the original destination. This is necessary where the Trunk Server sends messages to the address specified in the Contact header in the original INVITE message.
To define routing to the Telenor SBC, navigate to **Global Profiles → Routing** in the UC-Sec Control Center menu on the left hand side. Click on **Add Profile** and enter details in the **Routing Profile** pop-up menu.

- In the **Profile Name** field enter a descriptive name for the Telenor SBC and click **Next**
- In the **Name** field enter a descriptive name for the Telenor SBC
- Enter the Telenor SBC IP address (not shown) and port **5075** in the **Next Hop Server 1** field
- Select **UDP** for the **Outgoing Transport** and click **Finish**
7.7. Topology Hiding

Topology hiding is used to hide local information such as private IP addresses and local domain names. The local information can be overwritten or next hop IP addresses can be used. To define Topology Hiding for the Session Manager, navigate to **Global Profiles → Topology Hiding** in the UC-Sec Control Center menu on the left hand side. Click on **Add Profile** and enter details in the **Topology Hiding Profile** pop-up menu.

- In the **Profile Name** field enter a descriptive name for the Session Manager and click **Next**
- If the required Header is not shown, click on **Add Header**
- Select **From** as the required header from the **Header** drop down menu.
- Select the required action from the **Required Action** drop down menu, **Overwrite** was used for test
- Enter the required domain name for the Trunk Server, **avaya.com** was used for test
- Repeat for the **Request-Line** and **To** headers and **Overwrite** with a local domain name, **avaya.com** was used for test

Note that different domain names could be used for the enterprise and the Telenor network.
To define Topology Hiding for the Telenor SBC, navigate to **Global Profiles → Topology Hiding** in the UC-Sec Control Center menu on the left hand side. Click on **Add Profile** and enter details in the **Topology Hiding Profile** pop-up menu.

- In the **Profile Name** field enter a descriptive name for the Telenor SBC and click **Next**
- If the required Header is not shown, click on **Add Header**
- Select **From** as the required header from the **Header** drop down menu.
- Select the required action from the **Required Action** drop down menu, **Overwrite** was used for test
- Enter the required domain name for the Session Manager, **avaya.com** was used for test
- Repeat for the **Request-Line** and **To** headers and **Overwrite** with a domain name for the Telenor SBC, **avaya.com** was used for test

![UC-Sec Control Center](image)

7.8. Signalling Rules

Signalling rules are a mechanism on the Avaya Session Border Controller Advanced for Enterprise to handle any unusual signalling scenarios that may be encountered for a particular Service Provider. In the case of Telenor, as mentioned in **Section 2.2** the network is responding to OPTIONS messages from the Enterprise with a 407 “Proxy Authentication Required” message.

When the Entity Link described in **Section 6.6** is established, it initiates OPTIONS messages from the Session Manager to the Avaya Session Border Controller Advanced for Enterprise. This prompts the Avaya Session Border Controller Advanced for Enterprise to initiate OPTIONS messages to the Service Provider. If it doesn’t receive a valid response from the Service Provider, it will not respond to the Session Manager. The 407 “Proxy Authentication Required” is not treated as a valid response. When this happens, the Entity Links will not be established and will be indicated as “DOWN” on the Session Manager.
A signalling rule must be defined for Telenor to treat the 407 “Proxy Authentication Required” message as a 200 “OK”. To define the signalling rule, navigate to Domain Policies → Signalling Rules in the UC-Sec Control Center menu on the left hand side. Click on Add Rule and enter details in the Signalling Rule pop-up box

- In the Rule Name field enter a descriptive name for the Telenor signalling rule and click Next and Next again, then Finish
- Click on the Responses tab
- Click on the Add in Response Control
- Select Response Code 407
- Select Change response in the In Dialog Action field
- Define the response code as 200 and the text field as OK

An End Point Policy Group is required to implement the signalling rule. To define this, navigate to Domain Policies → End Point Policy Groups in the UC-Sec Control Center menu on the left hand side. Click on Add Group and enter details in the Policy Group pop-up box

- In the Group Name field enter a descriptive name for the Telenor Policy Group and click Next
- In the Application drop down menu, select default
- In the Border drop down menu, select No-Nat-Reg-Proxy
- In the Media drop down menu, select default-low-med
- In the Security drop down menu, select default-low
- In the Signalling drop down menu, select the recently added signalling rule for Telenor (Telenor 407)
- In the Time of Day drop down menu, select default
7.9. Server Flows

Server Flows combine the previously defined profiles into an outgoing flow from the Session Manager to the Telenor SBC and an incoming flow from the Telenor SBC to the Session Manager. This configuration ties all the previously entered information together so that calls can be routed from the Session Manager to the Telenor SBC and vice versa. To define an outgoing Server Flow, click on **Device Specific Settings** to expand the menu and select **End Point Flows**.

- Click on the **Server Flows** tab
- Select **Add Flow**
- In the **Name** field enter a descriptive name for the outgoing server flow
- In the **Received Interface** field, select the SIP signalling interface for the Telenor SBC
- In the **Signalling Interface** field, select the SIP signalling interface for the Session Manager
- In the **Media Interface** field, select the media interface for the Session Manager
- In the **Routing Profile** field, select the routing profile of the Telenor SBC
- In the **Topology Hiding Profile** field, select the topology hiding profile of the Session Manager

An incoming Server Flow is defined as a reversal of the outgoing Server Flow

- Select **Add Flow**
- In the **Name** field enter a descriptive name for the incoming server flow
- In the **Received Interface** field, select the SIP signalling interface for the Session Manager
- In the **Signalling Interface** field, select the SIP signalling interface for the Telenor SBC
- In the **Media Interface** field, select the media interface for the Telenor SBC
- In the **Routing Profile** field, select the routing profile of the Session Manager
- In the **Topology Hiding Profile** field, select the topology hiding profile of the Telenor SBC

[Diagram of Server Flows]
8. Service Provider Configuration

The configuration of the Telenor equipment used to support the Telenor SIP Trunk service is outside of the scope of these Application Notes and will not be covered. To obtain further information on Telenor equipment and system configuration please contact an authorised Telenor representative.

9. Verification Steps

This section provides steps that may be performed to verify that the solution is configured correctly.

1. From System Manager Home Tab click on Session Manager and navigate to Session Manager → System Status → SIP Entity Monitoring. Select the relevant SIP Entity from the list and observe if the Conn Status and Link Status are showing as up.

2. From the Communication Manager SAT interface run the command status trunk n where n is a previously configured SIP trunk. Observe if all channels on the trunk group display In service/ idle.
3. Verify that endpoints at the enterprise site can place calls to the PSTN and that the call remains active.
4. Verify that endpoints at the enterprise site can receive calls from the PSTN and that the call can remain active.
5. Verify that the user on the PSTN can end an active call by hanging up.
6. Verify that an endpoint at the enterprise site can end an active call by hanging up.

10. Conclusion

These Application Notes describe the configuration necessary to connect Avaya Aura® Communication Manager, Avaya Aura® Session Manager and Avaya Session Border Controller Advanced for Enterprise to Telenor SIP Trunk Service. Telenor SIP Trunk Service is a SIP-based Voice over IP solution providing businesses a flexible, cost-saving alternative to traditional hardwired telephony trunks. The service was successfully tested with a number of observations listed in Section 2.2.

11. References

This section references the documentation relevant to these Application Notes. Additional Avaya product documentation is available at http://support.avaya.com.

[6] Installing and Configuring Avaya Aura® Session Manager, April 2011, Document Number 03-603473
©2012 Avaya Inc. All Rights Reserved.
Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners. The information provided in these Application Notes is subject to change without notice. The configurations, technical data, and recommendations provided in these Application Notes are believed to be accurate and dependable, but are presented without express or implied warranty. Users are responsible for their application of any products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the full title name and filename, located in the lower right corner, directly to the Avaya DevConnect Program at devconnect@avaya.com.