
Developing

Exceptional

Multi-Modal

Customer

Experiences

®

Developing Exceptional Multi-Modal Customer Experiences

contents

 2	 Letter from the Editor

 3 	
The Business Case for Interactive Voice

	 and Video Response

 7 	
Going Against the Flow: Avaya Makes

	V oice Application Development Look Easy

10 	 Speech Sandbox: Application Simulation

14 	 CCXML: Powerful, Standards-Based Call Control

 20 	
Developing Speech Grammars That Rock

	P art 1: Best Practices

25 	
Developing Speech Grammars That Rock

	P art t: Grammar Tuning

3

2

7

10

20

14

25

2 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

Letter from the Editor…
By Michael Pastore

Q
uality communication between businesses and
customers is an important part of conducting
commerce, and has been from the beginning.
Customer communication has evolved rapidly
over the last several decades to include printed

newsletters and catalogs, e-mails and Web sites, and online
tools like Twitter.

For nearly 100 years the telephone has been a central part of
the interaction between customers
and business. The advent of mobile
phones, high-speed networks, and
accessories like hands-free devic-
es not only ensures that the phone
remains critical to communicating
with customers, but it opens new
doors as well.

Self-service telephone applications
that use an approach called Inter-
active Voice Response (IVR) are
relatively commonplace today. This
eBook examines how businesses
can take self-service applications
to a wholly different level by adding
speech and video capabilities to
the equation, enabling Interactive Voice and Video Response
(IVVR). By taking advantage of the ability to include speech
recognition, video and advanced call routing capabilities in
a self-service voice application, businesses can enhance the
experience for users and get a leg up on the competition.
IVVR can also help control costs by further streamlining the
involvement of human contacts in customer support business
processes.

Thanks to powerful development tools and standards like
SMIL, VoiceXML, and CCXML, the creation of IVVR applica-
tions is easier than ever before. This eBook is going to take
you on a tour of the development process used to create such
multi-modal customer experiences. We'll start with a look at

the business case for developing IVVR applications, written
by Mark Miller, the author of several books on networking
technologies.

Then we'll start to explore the nuts and bolts of building such
applications with articles by Shari Gould and Steve Apiki that
discuss Avaya Dialog Designer, an open-standards based
Integrated Development Environment for voice self-service
applications.

From there, we'll take a look at the
structure of a CCXML application and
get into writing some simple CCXML
documents. We'll also examine some of
the best practices for developing speech
grammars, which are the key to more
natural interaction and a more pleasant
caller experience.

To help you out along your journey IVVR
applications, we've assembled some
resources you'll want to explore.

• More information on Avaya Dialog
Designer, including free download of the
software, is available to registered
DevConnect members through the Avaya

DevConnect Portal (www.avaya.com/devconnect – become a
member and access the DevConnect portal).

• The Avaya DevConnect Portal offers additional featured
articles from the Avaya DevConnect Center on DevX.com,
including pointers to sample application code and additional
materials.

•	 More information on Avaya Self-Service Solutions, including
professional services that help you plan, design and integrate
self-service applications into your contact center operations can be
found at www.avaya.com - Enjoy and good luck!

https://devconnect.avaya.com/public/dyn/d_dyn.jsp?fn=429
http://www.devx.com/avaya/link/38404

3 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

erhaps your company went through a corporate downsizing, and now there are fewer workers around to help
shoulder the load. Or your competition is aggressively cutting its prices to stay afloat, and with that cutting into your
share of the market. Or maybe you are searching for the edge; that distinguishing factor that gives your firm a leg
up on the competition--be that speed of product delivery, improved customer service, reduced customer churn, or
optimized cost structure--whatever might keep your firm from becoming a recessionary statistic.

But all business transactions have a common thread: communication with the customer; and if we can optimize that aspect of the
business, we are likely to improve some of the other financial challenges as well. While this eBook focuses on broadly enabling
self-service applications through technologies such as automated speech recognition (ASR), Call Control XML (CCXML) and
VoiceXML, this article will introduce you to a new approach for communicating with your customers, called Interactive Voice and
Video Response, or IVVR for short. IVVR can dramatically enhance the customer interaction by adding a new form of communi-
cation--video--to the already-proven technologies of voice response services. But that is getting ahead of the story. Let's begin
by considering how an interactive response system can provide financial benefits during these challenging economic times.

The Value Proposition
Let's consider a basic assumption:

Automating the customer communication process
can lower the cost of customer contact, which can lead

to improvements in business financials.

In other words, the more customer enquiry calls that can be handled on a self-service basis, the lower the overall cost to
the organization.

The Business Case for
Interactive Voice and
Video Response

P

Unless you have been in a remote part of the Yukon and cut off from the rest of the business
world for the last year or so, you know that the global economy has turned south, and that com-
panies must work harder than ever these days. And harder can have several meanings.
by Mark A. Miller, P.E., President, DigiNet Corporation

4 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

For example, let's assume that you need a solution to support change of address updates or PIN reset requests for your custom-
ers, estimated at 800,000 updates a year. And let's estimate that automating this with a voice response system has a first year
cost of $200,000.00. Let's also assume that a call agent-assisted call costs your company $5, whereas a self-service call costs
only $0.25 to implement; and further, let's assume that 80 percent of the time the self-service process is successful in handling
the customer's enquiry.

A simple payback period would be calculated by:

First Cost

Number of Calls/month * cost savings per automated call * percentage of automated calls

Thus, if we assumed savings of $4.75 per call ($5.00 - 0.25), and the automated system could complete the call 80 percent of
the time, we would see a payback period of around eight months:

200,000

800,000 * 4.75 * 0.80

This yields a payback period of 0.65 years, or about 8 months.

Not factored into this simple analysis are the side benefits to the customer, such as getting a quick answer to a simple question,
or not having to wait on hold to speak with a live call agent. Thus, and perhaps unlike other business investments that might be
considered, a voice response system can provide a positive net return in a very short amount of time.

Speech Self-Service Applications
In the last decade or so, we have seen significant improvements in speech self-service applications. The first category could
be called informational, where a customer calls a response center needing a stock quote or airline flight status information. The
customer enters a few numbers, such as a flight number, on the telephone, a database lookup ensues, and a voice response
is returned.

A second category could be called transactional, where the customer wants to verify a credit card balance, buy some stock, or
make a flight reservation. These actions are more complicated, requiring interactions with multiple business processes, such as
confirmations of flight time, number of passengers, payment information, and so on.

A third category would be called problem solving, which is typical of technical support organizations, where the customer is
prompted through a set of decision tree-based questions that attempts to diagnose the problem without engaging the more
costly resources of a human. The design of the underlying decision tree makes these problem solving communication systems
even more complex.

5 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

continued

These three applications would typically use one of two types of customer input, either through touch-tone input using the
keypad on the telephone ("Press 1 for your account balance, press 2 to apply for a loan," etc.), or though a short phrase of
speech ("schedule a pickup," "track a package," etc.). But note the underlying technology of these existing systems: they are all
based on a customer's data and/or speech entry that generate an audible (i.e. voice) response from the system, hence the term
Interactive Voice Response, or IVR.

In recent years, the underlying software platforms that deliver voice response solutions have evolved to encompass capabilities
for speech biometrics (for user authentication), interactions with back-office systems via web services, and call control capabili-
ties to allow seamless transitions and interactions with live agents or other enterprise contacts. As a result, the IVR platform has
given way to the Voice Portal, an application server-oriented solution that provides greater application flexibility and control that
simple routing or pre-defined voice responses.

A New Paradigm: Interactive Voice and Video Response
Remember your first cell phone? Are you willing to swap your new Blackberry or iPhone for one of those old dinosaurs? Of
course not–you have become accustomed to a full keyboard that allows you to send text messages, a color display that lets you
see a GPS map to the your destination, or access information at 3G speeds, almost like you were in front of your office PC.

So the next logical question might be: given the availability of this technology, why should a customer response system be lim-
ited to just data and voice? Why not add a visual component, because after all, a picture is worth a thousand words? And if you
recognize that Bluetooth allows you to use the headset to send and receive the audio rather than the phone body itself, it means
you can now hold your mobile device in your hand and simultaneously look at the display while still exchanging audio information
(instead of having to hold the phone, and its display, up to your ear). Used in this way, your system is now both voice and video
enabled–hence the concept of Interactive Voice and Video Response.

To further your imagination, consider other ways that self-service solutions can be utilized, from in-store kiosks that allow
customers to speak with remote customer service agents (or 'bots, as the case might be with an automated self-service appli-
cation). While in-store personnel are busy serving other customers, a customer can interact with an IVVR-enabled self-service
application that not only responds to their queries, but pushes visual information to a media-enabled IP telephone or kiosk
display, such as maps directing them to the right store aisle for a specific replacement part, or allowing them to order items to be
shipped from a central warehouse that may not be available in the store at the momen–and showing them appropriate product
images to help them select color or style.

Avaya has created a demo of IVVR, using an example of an Internet-based florist called Bloomin' Blooms who has implemented
a coordinated voice and video customer response system, which allows customers to see images of flower arrangements
before they place their order, plus creates an upsell opportunity by offering the customer a beautiful vase to go with those
flowers. Check out the YouTube link to see this demo in action.

Enabling Standards
The IVVR application is based upon two key technologies: the Voice Extensible Markup Language (VoiceXML) and the
Synchronized Multimedia Integration Language, or SMIL (pronounced "smile"). Both of these technologies have been
developed by the World Wide Web Consortium (W3C, or www.w3c.org), which develops software, protocols, and standards
to promote the interoperability of Web applications.

http://www.youtube.com/watch?v=GOsSe-7aJzE

6 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

The first standard, VoiceXML, specifies a format for the verbal interaction between a human and a computer. This architecture
employs a voice browser that presents the information in audio format, such as a playback file, which is somewhat analogous to
a Web browser in that it presents visual information to end users. The second standard, SMIL, defines an XML-based language
for writing multimedia presentations that include streaming audio, streaming video, images, text, and so on. The language can
be used to create training courses, product presentations, or multimedia events for Web distribution, and includes parameters
to specify content, timing and synchronization, animations, visual transitions, and so on.

Putting It All Together
But you can't just take a neat idea, integrating voice and video for customer response, add in some standard technologies like
VoiceXML, CCXML (for call control) and SMIL, and make it happen–you need a development platform that can integrate all
these technologies to make them effective. That platform is Avaya Dialog Designer, a tool for streamlining VoiceXML speech and
video self-service application development.

Avaya Dialog Designer was developed to meet several objectives. First, it utilizes a common tool framework that is powered
by Eclipse, the open source development platform (see www.eclipse.org). Second, it supports lightweight development and
deployment, meaning that developers can install it on their own PC with built-in simulation that allows testing without a platform.
Third, it supports industry standards, including Java, J2EE (Java Platform Enterprise Edition), SOAP (Simple Object Oriented
Access Protocol), VoiceXML, CCXML and others. Finally, it meets the needs of both an IVR developer, and an IT buyer or sys-
tems integrator; rapidly building applications using drag/drop tools.

Dialog Designer includes a five-step process for application development. First, the end user builds call flow, caller prompts,
and grammars using an intuitive, graphical user interface. In the second step, those structures are sent to another process that
generates the application code. Third, this code is then simulated using an embedded VoiceXML browser and evaluated to
determine if the call processing application has been characterized correctly. Fourth, a deployment wizard packages the ap-
plication for the voice portal platform, and moves the packaged application to a J2EE-compliant application server. Fifth, the
VoiceXML code is processed on the customer's interactive response or voice portal, which runs the new application.

In summary, Avaya's latest release of Dialog Designer provides the industry's first full-cycle application development tool, which
includes video simulation, mixing touchtone, pre-recorded, and dynamic text-to-speech, video, speech recognition, VoiceXML,
CCXML, and SMIL, plus has the capability for connecting to back end systems and data sources via Structured Query Lan-
guage (SQL) and web services. It also provides a simplified deployment model, which can be integrated with the Avaya Voice
Portal. The move to a more application server oriented approach with Avaya Voice Portal also opens the door for outbound self
service applications, including both informational and transactional services. Imagine how you could wow your customers by
proactively reaching out to them with both voice and video--now you won't just confirm delivery of those flowers, you'll actually
let them see the look of joy on the recipients face with a coordinated video clip!

Subsequent chapters in this eBook will explore these capabilities in greater detail. But for now, turn your imagination loose, and
consider how your company might better weather this current economic storm by ratcheting up your customer contacts with an
interactive voice and video response.

Mark A. Miller, P.E. is President of DigiNet Corporation®, a Denver-based consulting engineering firm. He is the author of
many books on networking technologies, including Voice over IP Technologies, and Internet Technologies Handbook, both
published by John Wiley & Sons.

7 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

oth novice and seasoned developers can create
voice applications for their company's telephony
platforms. Novice developers frequently rely on
integrated development environments (IDEs)
to create applications for a variety of industries

and to run on one or more platforms,
be they UNIX, Linux, Mac OS X, or Mi-
crosoft Windows, to name the top tier
operating systems. More experienced
developers sink their teeth into the code
behind the IDE and can troubleshoot
problems should an obscure error oc-
cur. Regardless of the level of exper-
tise, enterprise developers without te-
lephony experience can get ahead on
the learning curve with Avaya Dialog
Designer IDE.

In addition to abstracting the details of
connecting to a telephony interface the
Dialog Designer provides support for
open standards like VoiceXML, Web
services, Speech Recognition Gram-
mar Specification (SRGS), and Java 2
Enterprise Edition (J2EE). It also pro-
vides ease of designing Voice User In-
terface (VUI) through a graphical drag
and drop interface.

Going Against the Flow:
Avaya Makes Voice Application
Development Look Easy

B
Built on the extensible architecture of the Eclipse open source
platform, Dialog Designer provides in-built connectors for
supported speech recognition engines, making it simple to
add speech to applications via a framework of development
tools. Dialog Designer stays true to its object-oriented design

by offering modules that allow for ef-
ficient reuse of code by other applica-
tions. Further, Dialog Designer's loose
coupling separates call flows and ap-
plication flows from language elements,
allowing for easy localization of applica-
tions.

Getting Started
Dialog Designer's deployment environ-
ment requires your company to have
a Web server platform running either
Apache Tomcat 5.0 or higher, IBM
WebSphere Express 6.0, or IBM Web-
Sphere Application Server 5.1.1 Web
server software; and a high-perfor-
mance Web server architecture.

Regardless
of the level of

expertise,
enterprise

developers without
telephony

experience can get
ahead… with
Avaya Dialog
Designer IDE.

See how enterprise developers can look like they have been coding telephony-based,
self-service applications for years—with tools and a few tricks of the trade.
by Shari L. Gould

8 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

Here's what you need to get started:
	 •	 Dialog Designer from Avaya, Eclipse, and other
		 components.

	 •	 A development machine with Windows 2000 or
		 Windows XP operating system.

	 •	 An Interactive system, if you want interaction
		 between the Dialog Designer application through
		 a telephony interface.

Avaya's CD includes the Eclipse platform, Dialog Designer,
and other critical design and development tools such as an
embedded VoiceXML browser to allow for fast simulation
and debugging of speech-enabled applications. Although it
is not required to run Dialog Designer, Avaya's Voice Portal
and Interactive Response telephony platforms share the
VoiceXML browser for consistent and reliable deployment
as well as dynamic generation of VoiceXML and speech and
touch-tone grammars.

Using the Development Environment
and Templates
Developers that are familiar with any modern IDE can
generate voice applications with the simple drag and drop
technique. Developers who are more experienced can
modify your voice applications via Dialog Designer's Console
window, as you can with many leading IDEs.

Wizards in the Development Environment allow you to quickly
create and integrate Web services within dialog call flows.
The Development Environment also allows you to test your
call flows on the fly using its simulator with built-in VoiceXML
browser.

Within the Development Environment, you can select,
configure, and link application templates, building reusable
components for automated voice services and call flows. You
also can create multilingual voice applications because of
Dialog Designer's separation of call and application flows
from language elements.

You can choose a template to help design the call flow
you want. Here are some basic template options within
Dialog Designer:

	 •	 Announce: used to create an initial announcement
		 the caller hears

	 •	 Prompt and Collect: the application prompts the
		 caller and collects data from him or her

	 •	 Several transfer options

	 •	 Record: used to record caller input (For example,
		 Record allows end users to record a message to
		 be delivered within the company's voicemail system.)

	 •	 Disconnect: delivers a message to the caller prior to
		 disconnecting the call

If you are a more daring and experienced developer, you can
create your own call flow without the aid of a template using
Dialog Designer's Application Items. Under the Application
Items palette, you can select an option to create a main menu
of choices for the caller, create a template from the Form op-
tion; and use the Data option to manage variables, application
data, databases, and Web services interfaces for computer/
telephony integration (CTI). Dialog Designer allows more
advanced developers to add servlets, or to drop in Voice XML
servlets to further extend the functionality.

Creating a Call Flow
Dialog Designer allows you to manage projects in a work-
space. As with most mainstream IDEs, Dialog Designer's
graphical use interface (GUI) uses standard expandable and
collapsible trees on the left of the window in the Navigator
Window. In the right side of the window, the palette displays
the call flow as you create it. Using the call flow builder, you
can create a speech project and collect input for a call flow,
such as setting the prompt name and grammar names.

Here's what you need to know to get started with a basic
voice application.

For a basic call flow design, you as a developer need to know
in what order each question and response should go. Heads
up, though—for more complicated applications like a call
center application, a little telephony experience may come in
handy when designing a call flow.

Let's start with creating a basic call flow with speech and
touch-tone grammars. Let's say you want to create an applica-
tion in which an automated system answers the telephone with
a pleasant greeting when someone calls your company. The
caller hears a menu of options from which he or she chooses
and the call is routed automatically to the appropriate place. A

9 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

series of questions from the automated system and responses
from the caller will help with directing the call.

Use the Flow folder in the Navigator Window to create a main
menu for the primary call flow, called main.flow by default.
Next, set the prompt name in the Prompt Editor. When you
create a prompt, you are telling the system what announce-
ment it should deliver to callers.

The next step is to set grammar name, or the list of menu
options from which the caller will choose. Grammars can be
defined as static or dynamic (at run time), or your company
can purchase lists of grammars from third-party sources if
specific menu options are required.

Handlers need to be identified next, so the system will know
how to respond if the user offers no input or response, or if the
caller's response does not match any option in the menu. Dia-
log Designer uses a text-to-speech (TTS) engine to interpret
what the caller says and repeats the caller's response back to
him or her. For example, the automated system replies back to
a caller, "You said, 'Yes'." With Dialog Designer's VoiceXML
capabilities, the IDE supports the specifications for the lan-
guage defined as the standards for voice interaction with end
users. In much the same way a Web browser retrieves HTML
from a server, the voice browser retrieves VoiceXML data from
a voice server. The voice browser then works with the text-to-
speech information using a speech recognition engine.

Finally, use the Connection tool to link the call flow. This tool
connects the nodes in the call flow from the starting node to
the exit node.

Simulating and Deploying Applications
When you have designed, developed, and saved your call
flow, Dialog Designer automatically checks the syntax, pro-
viding built-in error detection. You can use the Simulator to
test your call flow to ensure it responds as you designed and
developed it to perform. The simulator allows you to test your
applications in real time as you develop your application. The
voice browser is built into Avaya IR and Voice Portal, and
works with Dialog Designer in Simulation mode.

In Simulation mode, click the Start Call button. The Console
window shows the VoiceXML that is generated and processed
dynamically, and Java servlets are generated that run on
application servers that host the servlets, creating VoiceXML
rendering of Java.

When the voice application you created performs to your
specifications, you can deploy it to your company's telecom
platform, be it Avaya Voice Portal, Avaya IR, or another tele-
phony platform. You will need to point the IVR system to your
company's VoiceXML-compliant browser.

You will also need to deploy the Application Runtime Environ-
ment that Dialog Designer creates to your company's Apache
Tomcat or IBM WebSphere Java Servlet environment.

Differentiating Factors
Dialog Designer sets itself apart from its competitors in
several ways.

First, localization of voice applications is made easy, because
Dialog Designer was architected with loose coupling between
call and application flows and language elements. Also impor-
tant, Dialog Designer dynamically generates VoiceXML.

Dialog Designer's modular design makes it easy to use re-
gardless of your level of expertise. The ability to create Java
servlets and incorporate Web services allows you to imple-
ment the latest solutions for gaining a competitive edge. It also
allows developers to integrate voice applications with JDBC-
compliant databases as well as support Web services.

Both novice and seasoned developers can create voice ap-
plications for their company's telephony platform. Having an
IDE to create voice applications without having a telephony
background gives organizations and their developers a com-
petitive edge. Regardless of your level of telephony expertise,
you as an enterprise developer can get ahead on the learning
curve with Avaya Dialog Designer IDE.

Shari L. Gould has more than 16 years of journalism and technical
writing experience. Shari has written for numerous leading
publications throughout her career, most recently Software
Development Times and its various publications, and had an article
hand picked by Sun Microsystems for inclusion in its Solaris
Developer Connection. She also has more than 10 years
experience working with high-tech companies documenting
everything from network designs and installations, through
software design and APIs, to user interfaces. Shari currently is
pursuing her Master's degree in Criminal Justice, specializing in
Information Security.

© 2009 Avaya Inc. All Rights Reserved.

 Visit www.avaya.com/CC to see how
Avaya simplifies business communication.

Avaya Contact Centers
You have six incoming calls, one high-priority client on the line,
and 20 seconds to make his day.

Contact Center
Express

Connect the right
customers to the
right agents.

Home Agent

Work anywhere,
anytime.

Self Service

Help customers help
themselves.

10 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

vaya Dialog Designer can take your VoiceXML
(VXML) or Call Control XML (CCXML) appli-
cation all the way from concept to fully-tested
deployment—and it's every bit as strong in the
later phases of the development cycle as it is in

up-front design. The key to Avaya Dialog Designer's test and
debug prowess is Avaya Application Simulator, a built-in voice
browser and simulator that allows you to simulate calls from
the Dialog Designer IDE. With the application simulator, you
can test DTMF or speech-enabled applications without inter-
fering with production Avaya Voice Portal or Avaya Interactive
Response (IR) platforms. After testing, you can easily deploy
completed applications over to production servers. Avaya Ap-
plication Simulator fully integrates testing in the development
process, not only encouraging thorough testing but also fos-
tering iterative development.

Simulation is just one of the capabilities of Avaya Dialog
Designer, an Eclipse-based IDE for creating speech-based
self-service applications including those using VXML and
CCXML. With Avaya Dialog Designer, you can build self-
service applications such as reservation systems or account
information services and later deploy them to either the Avaya
Voice Portal or Avaya IR. Although we'll focus on test and
simulation here, the IDE also includes a graphical flow edi-
tor (Figure 1) for designing user interactions and connection
wizards for accessing web services, JDBC data sources, CTI
using Avaya Application Enablement Services, and services
offered by Avaya Interaction Center.

Speech Sandbox:
Application Simulation in
Avaya Dialog Designer

Avaya Dialog Designer's built-in application simulator gives you the freedom to test, tweak,
and innovate outside of a production self-service environment.
by Steve Apiki

You can download a CD image that includes Avaya
Dialog Designer, Eclipse, and all other prerequisites from
Avaya DevConnect (www.avaya.com/devconnect; free reg-
istration is required). The CD includes a number of
sample applications, one of which we'll use to illustrate the
simulation features of Avaya Dialog Designer. The
DevConnect site also includes full documentation for Avaya
Dialog Designer, including a Getting Started document and a
Developer's Guide.

A

Figure 1. Avaya Dialog Designer is built on the Eclipse platform and includes
specialized editors for building self-service applications. The application
simulator pane is at the bottom, in the center (indicated by red circle).

www.avaya.com/devconnect

11 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

Focusing on Simulation
A Dialog Designer VXML or CCXML application is
structured much like an HTML web application, with a
web server/servlet container hosting Servlets and serv-
ing them up to a browser. In production, those roles might
be filled by an IBM WebSphere, BEA Weblogic or Apache
Tomcat server hosting Servlets to an Avaya Voice Portal voice
browser. VXML is then rendered dynamically by the Avaya
Voice Browser.

Avaya Dialog Designer replicates this stack in a self-contained
development environment. In Avaya Dialog Designer, you use
the integrated design tools to generate Java servlets which
are then served by Tomcat (under the control of the IDE) to
the integrated voice browser. The voice browser is common
to Avaya Dialog Designer, Avaya Voice Portal, and Avaya IR.
In simulation, you drive the integrated voice browser using
simulated inputs, including DTMF tones and basic
speech recognition through the Microsoft SAPI-based
Automatic Speech Recognition (ASR) and Text-to-Speech
(TTS) engines.

Figure 2 shows the Avaya Application Simulator interface. The
screenshot shows the Application tab, where you can start a
simulation run. There are a number of additional tabs arrayed
across the bottom. Each tab may control a simulation feature
or display simulation results. These are the functions of each
of the tabs:

•	 Application: This is the starting tab. On the Application tab,
	 select the application to run and set startup parameters.
	 Startup parameters, which are optional, include a calling
	 number (for ANI or automatic number identification), a called
	 number (for DNIS or dialed number identification service), and
	 simulated Converse On data (in production, this would come
	 from a call center switch).

•	 CCXML Log: Displays CCXML log messages from the
	 application simulator.

•	 VXML Log: Displays VXML log messages from the
	 application simulator.

•	 Connector Log: Applications in AvayaDialog Designer
	 can interact with external computer telephony integration
	 (CTI) servers such as Avaya Application Enablement (AE)
	 Services and with Avaya Interaction Center (IC).
	 Applications interface with these systems through
	 connectors in Avaya Dialog Designer. The connector log
	 tab shows log messages from CTI and IC connectors.

•	 Script: Caller responses (DTMF and speech recognition) 	
	 may be scripted. You can use scripts for regression testing,
	 or in debug mode to move a call along to an interesting
	 position. Avaya Dialog Designer also supports a second type
	 of script, used to simulate connector actions. With connector
	 scripts, you can test CTI and IC connector applications
	 without access to real servers. You write both types of scripts
	 as external XML files. The script tab lows you to manage
	 these scripts.

•	 Parameters: Allows you to specify parameters to be passed
	 to the application under test in a number of categories,	
	 including call control and call classification. In a production
	 system, these parameters would be set by Avaya Voice
	 Portal or Avaya IR.

•	 Call: Avaya Application Simulator creates a call tab once the
	 application is started. The Call tab includes a keypad for
	 generating DTMF input, a Hang Up button, and call status
	 information. This is the main interface you'll use while a
	 simulation is active, and we'll discuss it in some detail in the
	 following section.

Stocks and Weather
Stocks and Weather is one of the sample applications sup-
plied with Avaya Dialog Designer (and even more are avail-
able via the DevConnect website). It's a VXML application
that prompts the caller for DTMF or voice inputs, and then
uses those inputs to look up stock or weather data through an
external web service. We'll walk through a simulation using
Stocks and Weather as an example.

Figure 2. The Avaya Application Simulator view. Here, the Application tab
is active. The Application tab is where you can set startup parameters and
start and stop the application.

12 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

To start the simulation, we select Stocks and Weather on the
Application tab and click Run. This starts Tomcat if it's not
already running and then launches the voice browser. As the
call starts up, Avaya Application Simulator creates a Call tab
(Figure 3). Since we specified a calling number on the Appli-
cation page, that number is shown along with a call id number
on the tab label. Stocks and Weather doesn't use the calling
number, but another application could use the ANI data, for
example, to help authenticate the caller.

Figure 3. The Call tab is used to control the simulation.

At the start of the call, Stocks and Weather asks the caller if
he or she wants a stock quote or weather information. This
prompt plays through the workstation speakers. On the Call
tab, the progress display (upper right) shows the text that the
voice browser just played, and the Call Active indicator glows
green to show that a call is in progress. The Waiting ASR and
Waiting DTMF indicators are also green, showing that the ap-
plication is now ready to accept speech or DTMF input.

In the application flow, that starting prompt is attached to a
menu node that will select the next node based on the caller's
response. Avaya Dialog Designer highlights this node in the
flow diagram. As the call proceeds, each active node is high-
lighted in turn, making it easy to follow the flow of a call in
simulation.

To continue the call, we can click "2" on the keypad and then
the Send Digits button to send DTMF input to the applica-
tion. The 2 corresponds to the "weather" choice, so the call
continues down that path, next prompting for the city name.
There are several ways to supply a speech response. First,
the simulator accepts voice input through the microphone, so
you can just say the city name ("San Francisco"). Second,
you can type the city name into the Recognition box in the call
tab, optionally specifying recognition confidence in the Con-
fidence box. Or finally, you can send No Match or No Input
responses directly by selecting those conditions in the Input
Result drop down.

Stocks and Weather uses the city name to look up the weath-
er, sending a SOAP query to a remote web service. Avaya
Dialog Designer supports connections to web services but
doesn't simulate them, so you'll need to have a real connec-
tion to fetch data from a web service when you run the ap-
plication in the simulator. Similarly, Avaya Dialog Designer
supports connection to a JDBC data source, but this, too, is
not simulated. You will either need access to a real external
database or need to create a test database server on the de-
velopment machine.

Stocks and Weather completes the query and then reads the
response (the weather for San Francisco). At this point we
can continue to navigate through the menus using the Call
tab, eventually completing the call using the Hang Up button.

You can also run CCXML applications through Avaya Appli-
cation Simulator. CCXML applications may create additional
calls (for example, a find-me/follow-me application might dial
several contact numbers from a list). The simulator creates a
Call tab for each active call so you have control over all the
calls in the simulation. (The UI for incoming calls looks slightly
different, allowing you to choose to answer the phone).

Making it Real
When your Avaya Dialog Designer application has been fully
tested, you can export it to a WAR or EAR file for deployment
to the production server. Deployment is a one-way process—
you don't round trip changes from production back into Avaya
Dialog Designer. Instead, you continue to revise and make
changes to the project in the IDE, and re-deploy as each

13 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

round of revisions is complete.

Avaya Dialog Designer adds speech project (VXML) and call
control project (CCXML) export types to Eclipse. To deploy
an Avaya Dialog Designer application, you first choose one
of these project types and then work your way through the
export wizard, specifying options such as the target platform
(e.g., Avaya Voice Portal) and the target web server (e.g.,
Tomcat). When you complete the export wizard, Avaya Dialog
Designer packs the application into a WAR file (for Tomcat) or
an EAR file (for WebSphere), ready for deployment as a live
application.

On its own, Avaya Application Simulator would be an inter-
esting tool. But it is hard to overstate the value that its tight
integration with the rest of the Avaya Dialog Designer IDE
brings. Integration means that you can build applications
iteratively, instantly seeing the results of changes. It makes
Avaya Dialog Designer a self-contained system that can be
installed on a laptop and brought home, or brought on the
road. And it gives you the freedom to try new ideas and new
applications without touching a production server.

Steve Apiki is senior developer at Appropriate Solutions, Inc.,
a Peterborough, NH consulting firm that builds server-based
software solutions for a wide variety of platforms using an
equally wide variety of tools. Steve has been writing about
software and technology for over 15 years.

14 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

CXML can transform a self-service application from a passive provider of information to an active hub
connecting callers to data, to applications, and—most interestingly—to other people. As the call-control framework
for Voice XML (VXML) applications, CCXML (Call Control XML) is designed to support the "people-to-people"
features that VXML lacks, including bridging, multi-party conferencing, and outcalling.

CCXML is a markup language that describes call control, just as VXML is a markup language that describes
voice dialogs. The two languages are complementary, and can be used independently. Both are intended to be served up by
web servers as documents to be interpreted by a voice browser such as Avaya Voice Portal. CCXML 1.0 is currently a Working
Draft of the W3C, the body that publishes and maintains web-related standards.

When VXML and CCXML are used together, CCXML is typically at the front end, with VXML dialogs providing user
interaction. The CCXML interpreter is responsible for handling calls. It takes action based on dialog responses, or asynchronously,
in response to external events. Unlike VXML, CCXML applications can manage more than a single call leg. A CCXML
application can deliver features like multi-call conferencing, transfer from IVR to live help or to a call recipient (and back),
and whisper transfer, none of which is possible with VXML or easily accomplished with legacy IVR systems.

In this article we'll take a look at the structure of a CCXML application and get into writing some simple CCXML documents.

CCXML:
Powerful, Standards-Based
Call Control

Take a high-level approach to call control with Call Control XML and bring new capabilities
to self-service applications.
by Steve Apiki

C

15 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

The Structure of a CCXML Application
The CCXML application model is similar to the familiar web programming model. In both cases there are two primary com-
ponents, a web server and a browser. The web application server runs a server-side telephony web application that delivers
CCXML documents to the voice browser in response to HTTP requests (Figure 1). A CCXML application is a set of related
CCXML documents that are interpreted by the voice browser.

Figure 1. CCXML architecture. The CCXML interpreter becomes the controller for the application, with one or more VXML interpreters optionally providing user
dialogs. This is a logical model; Avaya Voice Portal would encompass the CCXML Interpreter, the VXML Interpreter and Telephony Interface blocks along with

the control interfaces between them.

A CCXML application can be launched using one of several methods, but one common way is in response to an incoming phone
call. When the voice browser receives the call, it determines the starting URL of the application and loads the initial CCXML
document. From that point on, the CCXML application has control of the incoming call and can take actions with that call or
respond to call-related or external events.

16 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

An incoming call is represented in CCXML by a Connection object. CCXML applications work primarily with three kinds of
objects: Connections, Conferences, and Dialogs. A Connection often represents a call leg, but as an abstraction, a connection
can be thought of as an object with a single audio input and a single audio output. A conference object can be thought of as
having multiple audio inputs and a single audio output that mixes all of its inputs together. A dialog represents a voice dialog,
most often driven by a VXML interpreter rendering a VXML document.

At the risk of oversimplification, most of the actions taken by a CCXML application revolve around making and breaking
connections among these three types of objects. CCXML applications present a caller with a voice dialog by linking a
Connection with a Dialog; bridging two calls requires joining the inputs and outputs of two Connections; and an application
builds a conference by connecting multiple Connections to a single Conference object. These high-level abstractions are part
of the power of CCXML, as they free developers from having to implement complex call control actions at the API level.

Events and States
CCXML was designed to handle the asynchronous events inherent in telephony. Like GUIs and many other modern
programming environments, CCXML is event driven. The bulk of a CCXML document is a series of event handlers that the
interpreter invokes depending on the type of event received by the CCXML session and (optionally) on the current state of the
session. Virtually all of the work in a CCXML application takes place inside these event handlers.

Here is a CCXML Hello World:

<?xml version="1.0" encoding="UTF-8"?>
<ccxml version="1.0" xmlns="http://www.w3.org/2002/09/ccxml">
<eventprocessor>
<transition event="connection.alerting">
<log expr="'Hello World.'"/>
<exit/>
</transition>
</eventprocessor>
</ccxml>

When this document is processed in response to an incom-
ing call, it logs the "Hello World" string and then exits. This
simple (but complete) application includes an <eventpro-
cessor> element with a single <transition> element.
The eventprocessor element is the container for transition ele-
ments; each transition element represents a single event han-
dler. In this case, the handler is called when the application re-
ceives a connection.alerting event (that is, when the incoming
call is received). Non-trivial CCXML documents will contain
a number of transition elements (event handlers) within the
eventprocessor container.

CCXML applications may receive events generated by chang-
es in connection state, by dialogs, in response to executing
elements within an event handler, or from a variety of other
conditions. In fact, CCXML sessions may define arbitrary
events and send these to other sessions.

	 These are a few of the more common
	CCX ML events:

•	connection.alerting
	 Sent when an incoming call is received.

•	connection.connected
	 Sent when a call is initially connected.

•	connection.disconnected
	 Sent when a call is disconnected either by
	 the caller or by the application.

•	dialog.exit Sent when a voice dialog terminates.
	 You can retrieve values from the dialog from the fields
	 of this event.

17 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

A large CCXML document with more than a handful of transitions can quickly become hard to manage. One way to better struc-
ture a large document is to consider the eventprocessor as a finite state machine, with each transition element representing a
state transition. CCXML supports associating a state variable with the eventprocessor element which allows you to track the
session's current state, as shown in the following CCXML fragment:

<var name="sessionstate" expr="'initial'" />
<eventprocessor statevariable="sessionstate">
<transition state="initial" event="connection.alerting">
<accept/>
</transition>
<transition state="initial" event="connection.connected">
<assign name="sessionstate" expr="'dialog _ running'" />
<dialogstart src="'dlg.vxml'" />
</transition>

This eventprocessor is associated with a state variable named
sessionstate. When the document is initialized, sessionstate
is assigned the name of the starting state ("initial"). When an
event is received, the state variable is used as part of the
match criteria to determine which transition should be select-
ed. The transaction that handles the connection.connected
event launches a VXML dialog and moves the session to the
next state ("dialog_running"). Figure 2 shows the associated
(partial) state diagram.

Common Tasks
Let's expand the state variable example above to come up
with a simple CCXML application that connects an incoming
call to a voice dialog. When the dialog exits, the application
terminates. The full state diagram is shown in figure 3.

Figure 2. The state diagram for the state variable CCXML snippet.

Figure 3. The full state diagram for a CCXML application that connects
incoming calls to a VXML dialog.

18 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

To connect the caller to a VXML dialog, we use the dialogstart element, and give the URL of the VXML document as
the src attribute:

<dialogstart src="'dlg.vxml'" />

Again, this is a simple example. There are a number of other attributes that can be used for finer control of the dialog's behavior.
One important point here is that dialogstart is non-blocking; it starts a VXML interpreter on a new thread and uses the new
interpreter to process the VXML document. This means that the CCXML interpreter is free to go on and to respond to other
events.

As you can see from Figure 3, we need to add a few additional transitions to get from the states we already have defined to the
end state. When the dialog exits, we want to read back the dialog information and exit, so we add this transition:

<transition state="dialog _ running" event="dialog.exit">
<log expr="'Caller said:' + event$.values.response" />
<exit />
</transition>

The dialog.exit event handler is where a CCXML application can read values back from a voice dialog. The event object
visible inside the transition is an ECMAScript object with attributes that vary according to the event type. (ECMAScript is
the scripting language that is used with CCXML, the standard language of which JavaScript is an implementation.) A dialog.exit
event has a values attribute which is itself an ECMAScript object which can contain information to be passed from the dialog
to CCXML.

If the caller hangs up, we also want the application to exit. We only expect this event to occur in the dialog_running state, but
since we always want to exit on this event, we can write a transition that matches the event in any state by leaving out the state
attribute.

<transition event="connection.disconnected">
<exit/>
</transition>
You can also set a transaction to match multiple events using wildcards. As shown in the
state
diagram, we'll handle all error events by terminating the application:
<transition event="error.*" >
<exit/>
</transition>

As a final example of what you can do with CCXML, let's move beyond simple IVR and look at how you might place an outgoing
call (this might be part of a find me forwarding service).

To place the outgoing call we use the createcall element:

19 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

<createcall dest="'tel:5551212'"
connectionid="out _ connectionid"/>
<assign name="sessionstate" expr="'calling'" />

out _ connectionid is a variable that receives the identifier for the new connection. Once
we've started the call, we move into a calling state where we can respond to connection events
(both successful and unsuccessful).

On a successful connection event, we can bridge the incoming call to the outgoing call using the
CCXML join element:

<transition state="calling" event="connection.connected">
<join id1="in _ connectionid" id2="out _ connectionid" />
<assign name="sessionstate" expr="do _ join" />
</transition>

Using join in this way creates a bridge between the two call legs, essentially connecting the incoming caller with the
outgoing callee. Although the connections are bridged, the CCXML application is not out of the picture. It still maintains
full control over these connections and can respond to events from these connections by taking additional actions. In a full find
me application, we would use these call control techniques along with VXML dialogs to guide the caller. We would also need
a mechanism for looking up a list of numbers to call. This could be either a database lookup by the server or, because CCXML
has the ability to route events to external services, from a web service. With either method, CCXML's high-level programming
model naturally incorporates external data into making decisions related to call control.

As these simple examples illustrate, CCXML is a valuable abstraction from network protocols that gives developers the abil-
ity to add full telephony features to a web-based VXML application. In part two of this series we'll get down to the nuts and
bolts of building CCXML applications in Avaya Dialog Designer. Avaya Dialog Designer provides a graphical, Eclipse-based
environment that integrates VXML dialog design with CCXML control. Using Avaya Dialog Designer, we'll work our way through
an auto attendant application and explore more advanced CCXML features.

Steve Apiki is senior developer at Appropriate Solutions, Inc., a Peterborough, NH consulting firm that builds
server-based software solutions for a wide variety of platforms using an equally wide variety of tools. Steve has
been writing about software and technology for over 15 years.

20 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

one right, flexible, efficient grammars can make
speech applications feel more like real speech,
and less like the verbal equivalent of a game
of "Simon Says"
("Press 'one' for a

list of sandwiches," "If you'd like
a slice of cheese, say 'cheese',"
and so forth). Creating a grammar
is seemingly easy, but getting a
complex grammar right—building
a grammar that responds quickly,
and in ways that callers expect—
is an iterative process that has its
share of pitfalls. In this article,
we'll focus on the "pitfalls", intro-
ducing speech grammars and
then describing some critical best
practices that can help keep your
grammar development on track.
In part two we'll come back
around to the notion of "iterative"
grammar development, working
our way through the tuning
workflow for grammars, and cov-
ering tuning techniques.

Grammar Development
In a speech application, a grammar is a set of rules that
define the universe of words or phrases that can be recognized
when spoken by the caller (the full set of phrases that can
match a grammar is said to be generated by that grammar).
A separate grammar set is often associated with each input
state in a dialog, although some grammars may be
used in more than one context.

The application hands the grammar off to a speech
recognition engine (a component of the voice browser) for
processing. In effect, the application uses the grammar to tell

the recognizer what words or
patterns of words should be
expected at a given point in a
dialog. The recognizer chooses
the best match (if possible) from
entries in the grammar, returning
the entry and a confidence
score that describes the "close-
ness" of the match. The con-
fidence score is determined
algorithmically by the recog-
nizer, as part of the process of
matching the te plate models
from the grammar to the caller's
utterance.

A well-designed grammar is
flexible enough to match most
of the responses you might ex-
pect from a caller, but restric-
tive enough to give the recog-
nizer a reasonably small and
distinct set of options from

which to select a match. A good grammar optimizes rec-
ognition accuracy and enables the recognizer to return
matches with higher confidence scores. The challenge
of grammar development is choosing the right balance
between flexibility and restriction.

Developing Speech Grammars
That Rock, Part 1: Best Practices

Flexible grammars are key to more natural interaction and a more pleasant caller
experience. In the first installment of this two-part series on speech grammars, we
cover the basics of grammars and outline some grammar development best practices.
by Steve Apiki

D

21 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

Listing 1 shows an example of a GRXML grammar. This example is in the XML form developed
by the W3C as part of its SRGS recommendation (this form is commonly called GRXML). There
are also a number of other speech grammar formats that may be supported by speech
recognition engines, including ABNF (a non-XML format defined in SRGS) and GSL (a
proprietary Nuance format).

 Listing 1. An example GRXML grammar.

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://www.w3.org/2001/06/grammar" xml:lang="en-us"
version="1.0" root="root" mode="voice" tag-format="swi-semantics/1.0">
<rule id="root" scope="public">
<one-of>
<item>
<one-of>
<item>website help</item>
<item>web help</item>
<item>web</item>
</one-of>
<tag>CHOICE='website_help'</tag>
</item>
<item>
<one-of>
<item>cancel</item>
<item>cancel service</item>
</one-of>
<tag>CHOICE='cancel'</tag>
</item>
</one-of>
<item repeat="0-1">
<ruleref uri="#postphrase"/>
</item>
</rule>
<rule id="postphrase">
<one-of>
<item>please</item>
</one-of>
</rule>
</grammar>

Listing 1 matches phrases that the caller might use to request website help or to cancel his or her service. Although it's simple,
it shows two interesting features typical of speech grammars. First, several synonyms are mapped to a single return value
(using the one-of element) for both options. To cancel service, the caller could say either "cancel" or "cancel service", yet
"cancel" will be returned as the (semantic) response (or "slot") value in both cases.

22 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

Second, the postphrase rule defines an optional utterance
(i.e."please") that may occur after the main entry. Because
of the postphrase, "cancel please" would also match the
cancel rule. The postphrase rule is an example of postfiller.
Postfillers consist of utterances that come after keywords that
may increase the range of possible responses but which are
ignored by the speech recognizer in determining the match.
Similarly, prefillers consist of utterances that may occur
before the target (e.g., "I want to") but which don't affect the
return value.

Some Best Practices
When approaching grammar development it is important
to recognize that every ication is different, each with its own
set of data rules and its own target audience. What's more,
since callers are human, it's not possible to create hard and
fast rules about the best way to build a grammar. Instead,
we've compiled a short list of best practices to use in grammar
design. This is not a comprehensive list, but applying these
practices will go a long way toward creating efficient,
responsive grammars.

Best Practice #1:
Consider All Relevant Prompts
Carefully review the prompt or set of prompts that are associ-
ated with a grammar to come up with terms that a caller is
likely to use. If a grammar is associated with more than one
prompt—for example if the initial prompt and reprompts differ
however slightly in what they instruct callers to say—review
each of those prompts independently to come up with a set of
appropriate target phrases and synonyms.

Callers tend to parrot back prompts, so you may hear more of
the prompt in the response than just the expected keyword.
For example, a caller might respond to a prompt that says,
"Say 'main menu' to start over" with phrases such as "main
menu to start over", "start over" or just "main menu." This
requires that you expand the synonym list to include additional
phrases.

Say you have the following prompts, both associated with the
same grammar:

"To look up an order, just say "order"..."
"Remember: Just say 'order' to look up another order..."

Although "order" is the keyword you're looking for, the
caller might also say "look up an order" in response to the
first prompt and "look up another order" in response to the
second. Both must be handled by the grammar.

Nevertheless, when building the initial grammar, start with
expected answers (phrases a cooperative caller would say)
and err on the side of excluding possible additional synonyms
rather than including them. The more synonyms you have, the
greater the chance of incorrect matches. The number and
acoustic similarity between in-grammar phrases can also
deflate confidence scores, thus potentially resulting in
unnecessary reprompting. Additional synonyms can be
added during application tuning, when you have evidence that
a reasonable number of callers are speaking those phrases.

Best Practice #2: Avoid Overgeneration
Combining prefill, postfill, and a keyword with several
synonyms can quickly lead to an explosion of combinations of
valid responses. The number of combinations is given by:

(# prefillers +1) x (# entries) x (# postfillers +1)

With just two prefillers (e.g., "help with" and "help me with")
and one postfillers ("please"), a grammar with four entries
turns into 24 valid phrases. This can negatively impact rec-
ognition because, as mentioned above, the more in-gram-
mar items there are, the greater the likelihood of a false or
low-confidence match.

But overgeneration can also lead the application to accept
nonsensical responses. Consider a grammar used to locate
a hotel. The grammar includes the names of all fifty states,
plus the additional keyword "international". It also includes a
prefiller value of "the hotel is in." A user might reasonably say
"the hotel is in Texas." But this grammar would also match
on "the hotel is in international." Accepting nonsense re-
sponses makes the grammar needlessly complex, thereby
negatively impacting recognition performance and potentially
detracting from the caller experience. Essentially, if a native
speaker wouldn't naturally produce it, don't include it in your
grammar.

23 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

Overgeneration of this kind can be reduced by not auto-
matically applying sub-rules with simple combination. In the
example above, each state name might be given a synonym
that includes "the hotel is in" phrase, and the prefiller could
be removed. Alternatively, this prefiller rule could be applied
only in the domains that it makes sense. There are also more
sophisticated techniques, for example the use of JavaScript
or a dynamic grammar, which can also help to combat
overgeneration.

Best Practice #3:
Re-Use, but Re-Use Carefully
As we said earlier, a grammar is a set of expected phrases
for each individual input state. And, because a speech ap-
plication often has dozens of different prompts, it's tempt-
ing to re-use grammars for what appear to be almost identi-
cal interactions. But even simple grammars may not be as
generally applicable as they seem. Again, it's important to
note the differences between candidate prompts where
grammar-sharing is being considered. Take, for example, a
simple "yes/no" grammar, which may include yes, no, and a
set of general synonyms (eg, "OK"). Now let's look at two
prompts that may seem on the surface to elicit similar re-
sponses:

"That was Austin. Did I get that right?"
"Would you like to place an order?"

In response to the first prompt, a caller may say "right," "that's
right," "yes you did" or "correct" as well as the aforementioned
generic entries; in response to the second, he or she may say
"yes I would or "yes please". It may be tempting to salvage
the reusability of this grammar by expanding it to include all
of these potential entries. But doing so would introduce
overgeneration given the domain and its associated
recognition pitfalls.

Better candidates for re-use are grammar rules that can be
used at prompts throughout the application, such as "help
me out" or "operator." Other candidates for reusable gram-
mars are common data formats, such as dates (but be
sure that they really are the same kind of "date"— see Best
Practice #4).

Best Practice #4: Know Your Data
You can exploit the differences among different types of data
and among different data formats to build highly selective
grammars. By restricting potential matches to those both al-
lowed by data format rules and valid for a specific data type,
you can greatly reduce the srecognition domain, thus boost-
ing recognition accuracy and confidence.

Account numbers are often restricted to a specific format,
such as a certain number of digits, or a requirement that the
account starts or ends with a letter. Adding these restric-
tions to the account number grammar is an example of how
you can take advantage of format restrictions to build better
grammars. Taking advantage of known data formats is crucial
when employing alphanumeric grammars and is recommend-
ed even for varying length digit strings when it's not known
which length string the caller will use.

Be specific when identifying data types for each element.
A reservation date (which must be in the future) and a birth
date (which must be in the past), though both dates, belong to
completely disjoint sets. You can reduce grammars for these
data items by including past and future restrictions.

If you have enough domain knowledge, you can and should
introduce additional type restrictions For example, suppose
you are processing inquiries for a retirement community with
a minimum age requirement. You can use the minimum age to
further narrow the range of probable birth dates.

Including these restrictions up front in the grammar, creates
additional benefits in addition to increasing recognition accu-
racy. It offloads some of the validation logic from that applica-
tion to the recognizer, reducing the load on the application. It
also lowers the risk of confirming an utterance in the dialog
("You said March 4th, 1921. Is that right?") only to have it
later rejected by the application ("I'm sorry, that's not a valid
date for travel"). Consistency errors such as these can quickly
frustrate callers and result in a loss in caller confidence.

24 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

Starting Early
To take advantage of structures and patterns within the data
that can enhance recognizer accuracy, it's critical that you
start the grammar design process early, during the first stag-
es of application design. By starting early, you can ensure that
the data you need to restrict grammars appropriately can be
made available by the host system, and that the recognition
task required for a given input state is technically feasible.
For example, you could load a grammar used for movie ticket
purchase with a list of features that are currently playing, but
you might need to build the web service to deliver that list as
part of the application development effort.

Starting early also allows application developers to work
closely with speech scientists to coordinate prompts and
grammars with other parts of the application. As with any UI
elements, speech application prompts and grammars can't
be bolted on at the end of the process—they need to be de-
signed and integrated into the flow of the application.

Avaya supplies both tools and professional services expertise
in support of grammar development. Avaya Dialog Designer
includes a built-in grammar editor for VXML applications that
allows the user to create grammars as they work in a graphical
dialog editor. The grammar editor in Avaya Dialog Designer
creates list-based SRGS-compliant grammars for any of the
speech recognition engines supported by Avaya Voice Portal.
Avaya Professional Services also offers a wide range of con-
sulting services, including grammar design and development
support and application tuning.

Developing flexible and efficient grammars pays off in speech
applications that respond to typical speaking patterns ac-
curately the first time. But getting all the way there requires
some additional work beyond initial deployment. In part 2 of
this series, we'll talk about tuning, and how to analyze data
from actual calls to further improve grammars.

Steve Apiki is senior developer at Appropriate Solutions, Inc.,
a Peterborough, NH consulting firm that builds server-based
software solutions for a wide variety of platforms using an equally
wide variety of tools. Steve has been writing about software and
technology for over 15 years.

25 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

rammar development doesn't end when an ap-
plication goes live. It's only with a live application
that you can collect the kind of information you
need to create truly
responsive gram-

mars. In grammar development,
tuning closes the loop between
deployment and development,
feeding actual call data back
into the design process to drive
progressively better recognition
accuracy and a better caller ex-
perience. In part one of this se-
ries, we highlighted some best
practices for speech grammars
that you can apply during design
and development. Here, we'll talk
about what happens after deploy-
ment, when you can collect data
from caller responses to tune the
grammars you've built.

A speech grammar defines all
the words and phrases that an
application expects in response
to a prompt, expressed as a set
of rules. The aplication provides the grammar to the speech
recognition (or ASR) engine, which returns the best match-
ing phrase in the grammar along with a confidence score
that measures the quality of the match. It's our goal to build
applications that respond to the caller's words quickly and
accurately the first time. To do that, we want gram-
mars that include all of the phrases a cooperative call-
er is likely to use, and nothing else. The tuning pro-
cess can help move us closer to these ideal grammars.

The Tuning Cycle
Grammar tuning is a specific effort directed at improving
caller experience by optimizing recognition accuracy. It's an

important post-deployment ac-
tivity for speech applications
that includes caller experi-
ence tuning, but distinct from
QA testing, customer accep-
tance testing and load testing.
Grammar tuning is a cyclical
process that relies on
continuous or at least repeated
data collection to get to the best
results.

The grammar tuning workflow
has four stages:

Capture
Capturing tuning data begins by
recording caller interactions in
both audio and written form and
then manually transcribing these
recordings. For recording the
utterances, you can use call re-
cording capabilities on the Voice

Portal. Manual transcription is a labor-intensive process and
may limit the amount of data that you can collect. However, it's
the human in the transcription loop that allows us to determine
recognition accuracy in later stages.

Classification
Using the application logs and recognizer data, we next clas-
sify caller utterances based on whether they are in-grammar

Developing Speech Grammars
That Rock, Part 2: Grammar Tuning

Grammar Tuning is the process of improving grammars based on analysis of actual caller
interactions. Here we'll tell you what to look for in a grammar tuning analysis—and what to
do with what you find.
by Steve Apiki

G

26 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

or out-of-grammar, and whether or not they were correctly
handled by the recognizer (see the sidebar, "The Terminology
of Tuning" for an explanation of common classifications). This
classification data is then compiled into statistics that can be
used for analysis.

Analysis
Here, we analyze the data to spot problems like frequently
misrecognized utterances, or common caller responses that
are out-of-coverage, and develop suggested changes to
grammars to address these problems.

Implementation
Lastly, we close the loop by implementing the recommended
grammar changes resulting from this analysis.

After implementation, the process starts again as you capture
new data to measure the effect of your changes and suggest
steps for further recognition optimizations.

Analyzing Tuning Data
Once you've got your data set classified, you can look at
the histogram of classifications and start to see where you
may need to make adjustments. But these adjustments aren't
simple control knobs—none of the parameters in grammar
tuning are completely orthogonal. Making changes to improve
measures in one category will also affect other categories,
sometimes in a negative way. See the sidebar to understand
how these parameters are defined.

From a high level, there are two ways to approach tuning:
you can optimize for in-grammar (that is, increasing CA-in and
decreasing FA-in and FR-in), or you can optimize for out-of-
grammar (increasing CR-out and decreasing FA-out). Steps
that you may take to better in-grammar performance will gen-
erally degrade out-of-grammar performance, and vice-versa.
Getting the balance right can be tricky. As a rule it's best to
focus on in-grammar first to make sure that the recognizer is
recognizing legitimate caller requests as intended. After that,
you can move on to better screening of out-of-grammar items,
understanding that any changes made to account for these
could negatively impact recognition for cooperative callers.

When reviewing in-grammar behavior, a large number of ut-
terances that are classified as FA-in may indicate that items
in the grammar are too acoustically similar (e.g., "repeat"

The Terminology of Tuning
Part of the tuning process is to classify recorded
caller utterances based on their relationships to the
grammar and to the recognizer's response. These are
some common terms used in classification.

IG In Grammar
Utterances that are included within the allowable words
and phrases generated by the rules of the grammar.

OOG Out of Grammar
Utterances that are not covered by the grammar,
including "um," "ah," and background events such as
coughing and side speech. IG and OOG are mutually
exclusive, and all utterances can be classified as either
IG or OOG.

OOC Out of Coverage
Utterances that are OOG, but including direct
user speech only, and excluding noise and back-
ground events. This is a subcategory of OOG. OOC
utterances are especially interesting for tuning because
they are intended responses by the user that are not in-
cluded in the grammar.

IG, OOG, and OOC classifications are independent of
the recognizer's response. The following
classifications are all subcategories of the first three
that also consider how the utterance was
recognized.

CA-in Correctly Accepted In Grammar
An IG utterance that the recognition engine correctly
recognized.

27 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

and "delete"). If any of the words in this list are unnecessary
(say, due to overgeneration in the grammar), then they can
simply be eliminated. Otherwise, the grammar entries should
be made more acoustically distinct. Some ways to choose
entries that are easily differentiated include choosing phrases of
different length, or phrases that differ in vowel sounds, number
of syllables, or other acoustic parameters. You may also get
some improvement by changing settings on the recognizer or
employing creative methodologies on the design side.

A high incidence of FR-ins may mean that the recognizer's
confirmation levels are set too high. But it may also mean
that there's a variance between the pronunciation that the
recognizer expects and the pronunciations actually used
by callers. One way to get around the pronunciation problem
is to reference a custom pronunciation lexicon from the
grammar. It's also possible that two acoustically similar and
thus competing grammar items are resulting in artificially
lowering the confidence scores returned.

Out-of-Grammar Tuning Data
When considering the out-of-grammar tuning data, the first
classification to consider is OOC (out-of-coverage). These
are direct caller utterances without any background events
(such as noise or side speech) that simply aren't in the gram-
mar. If there are a significant number of different instances
where callers tried the same OOC utterance, that utter-
ance should be considered a candidate for inclusion in the
grammar. In part one of this series, we suggested a best
practice of limiting the initial grammar as much as possible,
and adding additional grammar as needed during tuning. It's
from this category that you would identify these additional
grammar items.

Second, take a look at all OOG (out-of-grammar) items. Try to
determine if there is a consistent noise source among these
items (some consistent noise sources may be line noise,
or echo from the prompt) that may be wreaking havoc with
recognition accuracy. If there is a repeatable noise source,
it may make sense to modify confirmation thresholds so that
items in this group are confirmed (e.g., "Did you say 'Balco-
ny?'") rather than rejected outright or modify the endpointer
sensitivity. If the noise source actually is prompt echo, that
may be something you can control by lowering the outgoing
prompt volume.

FA-in Falsely Accepted In Grammar
An IG utterance that was recognized as a different
item in the grammar.

FR-in Falsely Rejected In Grammar
An IG utterance that was rejected and therefore not
recognized.

CR-out Correctly Rejected Out of Grammar
An OOG utterance that was correctly rejected.

CR-OOC Correctly Rejected Out of Coverage
An OOC utterance that was correctly rejected.

FA-out Falsely Accepted Out of Grammar
An OOG utterance that was falsely accepted as an
in-grammar item.

FA-OOC Falsely Accepted Out of Coverage
An OOC utterance that was falsely accepted as an
in-grammar item.

28 Developing Exceptional Multi-Modal Customer Experiences. © 2009, WebMediaBrands Inc.

Developing Exceptional Multi-Modal Customer Experiences

back to index

When reviewing recognizer behavior when presented with
out-of-grammar utterances, a high number of FA-outs may in-
dicate that confirmation levels are set too low. In this case, you
should increase the high confirmation threshold to increase
the number of confirmations versus accepts. FA-outs may
also occur when a caller uses a variation on an in-grammar
phrase. For example, the in-grammar phrase may be "main
menu," but the caller may say "main menu please." This is
technically out-of-grammar, but it may be accepted by the
system. In these cases, the system is probably already doing
what the caller expects, but it may be appropriate to make the
grammar adjustments (such as adding postfiller) to change
these items to CA-in.

In every case, optimizing a grammar requires really looking
into the details of each specific recognition state. Determine
the condition you need to fix, then look at all the possible
contributors, including the grammar, confirmation thresholds,
ASR parameters, the prompt, and the quality of the line. As
an example, say that you are dealing with a number of FA-ins.
These could be due to the common suggestions given above,
or they could be something more exotic, like ASR end pointer
sensitivity, or prompt echo resulting in premature barge-in. Be
sure to test proposed solutions to make sure they solve the
underlying problem.

Finding the Balance
Developing a flexible, responsive grammar is an iterative pro-
cess that depends heavily on collecting production data and
feeding that data back into grammar development with tuning.
Although grammar tuning isn't easy, it pays off in better caller
experience. The grammar tuning process is a balancing act,
all about finding the balance between IG and OOG items.
And balancing is never a one-time effort, it requires constant
course correction as new functionality is added, caller demo-
graphics change, and caller's become expert users. That's
what grammar tuning provides.

Proper tuning requires both tools for data collection and
analysis, and expertise to interpret results. As it does for stages
throughout grammar development, Avaya provides both tools
and professional service expertise in grammar (and complete
application) tuning through Avaya Professional Services.

As we said in part one, the most important advantage you
can get in grammar development is an early start. By starting
early, you can involve developers and speech scientists in the
process to ensure that prompts and grammars are structured
properly and that your application has access to all the data it
needs for grammar processing.

Steve Apiki is senior developer at Appropriate Solutions, Inc.,
a Peterborough, NH consulting firm that builds server-based
software solutions for a wide variety of platforms using an equally
wide variety of tools. Steve has been writing about software and
technology for over 15 years.

